Suppr超能文献

可见光驱动的 TiO@FeO/壳聚糖纳米复合材料通过过一硫酸盐促进美罗培南和亚胺培南抗生素的光降解。

Visible-light-driven TiO@FeO/Chitosan nanocomposite with promoted photodegradation of meropenem and imipenem antibiotics by peroxymonosulfate.

机构信息

Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.

Department of Environmental Health Engineering, School of Public Health, Baqiyatallah University of Medical Sciences, Tehran, Iran.

出版信息

Environ Technol. 2024 Jul;45(17):3456-3467. doi: 10.1080/09593330.2023.2218042. Epub 2023 May 30.

Abstract

This study assessed wastewater treatment by visible-light/Peroxymonosulfate process using its linking with TiO@FeO nanoparticles coated on chitosan. Meropenem and Imipenem photodegradation was evaluated as a model-resistant contaminant by TiO@FeO/chitosan nanocomposite. The synthesised TiO@FeO/chitosan was characterised using various techniques. FeO and TiO nanoparticles on the chitosan surface were affirmed via XRD, EDX, and FTIR findings. The FESEM and TEM results verified the deposition of TiO@FeO on the chitosan surface. Under optimum circumstances (pH = 4, catalyst dosage = 0.5 g/L, antibiotics concentration = 25 mg/L reaction time = 30 min, and PMS = 2 mM), maximum degradation efficiency was obtained at about 95.64 and 93.9% for Meropenem and Imipenem, respectively. Also, the experiments demonstrated that TiO@FeO/chitosan had a better performance than photolysis and adsorption by catalyst without visible light irradiation in degrading antibiotics. The scavenger tests confirmed that , , , and h are present simultaneously during the pollutant photodegradation process. After five recovery cycles, the system eliminated over 80 percent of antibiotics. It suggested that the catalyst's capacity to be reused may be cost-effective.

摘要

本研究评估了可见光/过一硫酸盐工艺对废水的处理效果,该工艺将 TiO@FeO 纳米颗粒涂覆在壳聚糖上。采用 TiO@FeO/壳聚糖纳米复合材料作为模型抗性污染物,评估了美罗培南和亚胺培南的光降解情况。采用各种技术对合成的 TiO@FeO/壳聚糖进行了表征。XRD、EDX 和 FTIR 结果证实了壳聚糖表面存在 FeO 和 TiO 纳米颗粒。FESEM 和 TEM 结果验证了 TiO@FeO 在壳聚糖表面的沉积。在最佳条件下(pH=4,催化剂用量=0.5 g/L,抗生素浓度=25 mg/L,反应时间=30 min,PMS=2 mM),美罗培南和亚胺培南的最大降解效率分别约为 95.64%和 93.9%。此外,实验表明,在没有可见光照射的情况下,TiO@FeO/壳聚糖在降解抗生素方面的性能优于光解和催化剂吸附。猝灭实验证实,在污染物光降解过程中同时存在 、 、 和 h。经过五次回收循环后,该系统消除了超过 80%的抗生素。这表明该催化剂具有较高的重复利用价值,可能具有成本效益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验