Suppr超能文献

基于图结构的多粒度置信融合的人体活动识别。

Graph-Structure-Based Multigranular Belief Fusion for Human Activity Recognition.

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Oct;35(10):13589-13603. doi: 10.1109/TNNLS.2023.3270290. Epub 2024 Oct 7.

Abstract

The belief functions (BFs) introduced by Shafer in the mid of 1970s are widely applied in information fusion to model epistemic uncertainty and to reason about uncertainty. Their success in applications is however limited because of their high-computational complexity in the fusion process, especially when the number of focal elements is large. To reduce the complexity of reasoning with BFs, we can envisage as a first method to reduce the number of focal elements involved in the fusion process to convert the original basic belief assignments (BBAs) into simpler ones, or as a second method to use a simple rule of combination with potentially a loss of the specificity and pertinence of the fusion result, or to apply both methods jointly. In this article, we focus on the first method and propose a new BBA granulation method inspired by the community clustering of nodes in graph networks. This article studies a novel efficient multigranular belief fusion (MGBF) method. Specifically, focal elements are regarded as nodes in the graph structure, and the distance between nodes will be used to discover the local community relationship of focal elements. Afterward, the nodes belonging to the decision-making community are specially selected, and then the derived multigranular sources of evidence can be efficiently combined. To evaluate the effectiveness of the proposed graph-based MGBF, we further apply this new approach to combine the outputs of convolutional neural networks + attention (CNN + Attention) in the human activity recognition (HAR) problem. The experimental results obtained with real datasets prove the potential interest and feasibility of our proposed strategy with respect to classical BF fusion methods.

摘要

信念函数(Belief Functions,简称 BFs)由 Shafer 于 20 世纪 70 年代中期提出,广泛应用于信息融合领域,用于建模认知不确定性并进行不确定性推理。然而,由于其在融合过程中的高计算复杂性,尤其是当焦点元素数量较大时,其应用受到限制。为了降低使用 BFs 进行推理的复杂性,我们可以设想首先通过将原始基本信念分配(Basic Belief Assignments,简称 BBAs)转换为更简单的分配来减少融合过程中涉及的焦点元素数量,或者通过使用简单的组合规则来减少数量,这种规则可能会损失融合结果的特异性和相关性,或者同时使用这两种方法。本文重点研究第一种方法,并提出了一种新的 BBA 粒度划分方法,该方法受到图网络中节点社区聚类的启发。本文研究了一种新的高效多粒度信念融合(Multigranular Belief Fusion,简称 MGBF)方法。具体来说,焦点元素被视为图结构中的节点,节点之间的距离将用于发现焦点元素的局部社区关系。之后,选择属于决策社区的节点,然后可以有效地组合派生的多粒度证据源。为了评估基于图的 MGBF 的有效性,我们进一步将这种新方法应用于卷积神经网络+注意力(Convolutional Neural Networks + Attention,简称 CNN + Attention)在人体活动识别(Human Activity Recognition,简称 HAR)问题中的输出组合。使用真实数据集获得的实验结果证明了我们提出的策略相对于经典 BF 融合方法的潜在兴趣和可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验