Suppr超能文献

基于证据理论的复杂网络中有影响力节点识别

Identifying Influential Nodes Based on Evidence Theory in Complex Network.

作者信息

Tan Fu, Chen Xiaolong, Chen Rui, Wang Ruijie, Huang Chi, Cai Shimin

机构信息

School of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, China.

School of Computing and Artificial Intelligence, Southwestern University of Finance and Economics, Chengdu 611130, China.

出版信息

Entropy (Basel). 2025 Apr 10;27(4):406. doi: 10.3390/e27040406.

Abstract

Influential node identification is an important and hot topic in the field of complex network science. Classical algorithms for identifying influential nodes are typically based on a single attribute of nodes or the simple fusion of a few attributes. However, these methods perform poorly in real networks with high complexity and diversity. To address this issue, a new method based on the Dempster-Shafer (DS) evidence theory is proposed in this paper, which improves the efficiency of identifying influential nodes through the following three aspects. Firstly, Dempster-Shafer evidence theory quantifies uncertainty through its basic belief assignment function and combines evidence from different information sources, enabling it to effectively handle uncertainty. Secondly, Dempster-Shafer evidence theory processes conflicting evidence using Dempster's rule of combination, enhancing the reliability of decision-making. Lastly, in complex networks, information may come from multiple dimensions, and the Dempster-Shafer theory can effectively integrate this multidimensional information. To verify the effectiveness of the proposed method, extensive experiments are conducted on real-world complex networks. The results show that, compared to the other algorithms, attacking the influential nodes identified by the DS method is more likely to lead to the disintegration of the network, which indicates that the DS method is more effective for identifying the key nodes in the network. To further validate the reliability of the proposed algorithm, we use the visibility graph algorithm to convert the GBP futures time series into a complex network and then rank the nodes in the network using the DS method. The results show that the top-ranked nodes correspond to the peaks and troughs of the time series, which represents the key turning points in price changes. By conducting an in-depth analysis, investors can uncover major events that influence price trends, once again confirming the effectiveness of the algorithm.

摘要

有影响力节点识别是复杂网络科学领域中一个重要且热门的话题。传统的有影响力节点识别算法通常基于节点的单一属性或少数属性的简单融合。然而,这些方法在具有高复杂性和多样性的真实网络中表现不佳。为了解决这个问题,本文提出了一种基于Dempster-Shafer(DS)证据理论的新方法,该方法通过以下三个方面提高了有影响力节点的识别效率。首先,Dempster-Shafer证据理论通过其基本信任分配函数对不确定性进行量化,并结合来自不同信息源的证据,使其能够有效处理不确定性。其次,Dempster-Shafer证据理论使用Dempster组合规则处理冲突证据,增强了决策的可靠性。最后,在复杂网络中,信息可能来自多个维度,而Dempster-Shafer理论可以有效整合这些多维度信息。为了验证所提方法的有效性,在真实世界的复杂网络上进行了大量实验。结果表明,与其他算法相比,攻击由DS方法识别出的有影响力节点更有可能导致网络解体,这表明DS方法在识别网络中的关键节点方面更有效。为了进一步验证所提算法的可靠性,我们使用可见性图算法将英镑期货时间序列转换为复杂网络,然后使用DS方法对网络中的节点进行排序。结果表明,排名靠前的节点对应于时间序列的峰值和谷值,这代表了价格变化中的关键转折点。通过深入分析,投资者可以发现影响价格趋势的重大事件,再次证实了该算法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9823/12025453/b622dbdb7274/entropy-27-00406-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验