Suppr超能文献

DGA3-Net:一种使用非对比 CT 进行急性缺血性脑卒中 ASPECTS 评估的参数高效深度学习模型。

DGA3-Net: A parameter-efficient deep learning model for ASPECTS assessment for acute ischemic stroke using non-contrast computed tomography.

机构信息

Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.

Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan.

出版信息

Neuroimage Clin. 2023;38:103441. doi: 10.1016/j.nicl.2023.103441. Epub 2023 May 19.

Abstract

Detecting the early signs of stroke using non-contrast computerized tomography (NCCT) is essential for the diagnosis of acute ischemic stroke (AIS). However, the hypoattenuation in NCCT is difficult to precisely identify, and accurate assessments of the Alberta Stroke Program Early CT Score (ASPECTS) are usually time-consuming and require experienced neuroradiologists. To this end, this study proposes DGA3-Net, a convolutional neural network (CNN)-based model for ASPECTS assessment via detecting early ischemic changes in ASPECTS regions. DGA3-Net is based on a novel parameter-efficient dihedral group CNN encoder to exploit the rotation and reflection symmetry of convolution kernels. The bounding volume of each ASPECTS region is extracted from the encoded feature, and an attention-guided slice aggregation module is used to aggregate features from all slices. An asymmetry-aware classifier is then used to predict stroke presence via comparison between ASPECTS regions from the left and right hemispheres. Pre-treatment NCCTs of suspected AIS patients were collected retrospectively, which consists of a primary dataset (n = 170) and an external validation dataset (n = 90), with expert consensus ASPECTS readings as ground truth. DGA3-Net outperformed two expert neuroradiologists in regional stroke identification (F1 = 0.69) and ASPECTS evaluation (Cohen's weighted Kappa = 0.70). Our ablation study also validated the efficacy of the proposed model design. In addition, class-relevant areas highlighted by visualization techniques corresponded highly with various well-established qualitative imaging signs, further validating the learned representation. This study demonstrates the potential of deep learning techniques for timely and accurate AIS diagnosis from NCCT, which could substantially improve the quality of treatment for AIS patients.

摘要

使用非对比计算机断层扫描 (NCCT) 检测中风的早期迹象对于急性缺血性中风 (AIS) 的诊断至关重要。然而,NCCT 中的低衰减难以准确识别,并且准确评估 Alberta 中风计划早期 CT 评分 (ASPECTS) 通常需要耗费时间并且需要有经验的神经放射科医生。为此,本研究提出了 DGA3-Net,这是一种基于卷积神经网络 (CNN) 的模型,用于通过检测 ASPECTS 区域中的早期缺血性变化来评估 ASPECTS。DGA3-Net 基于一种新颖的参数高效二面体组 CNN 编码器,利用卷积核的旋转和反射对称性。从编码特征中提取每个 ASPECTS 区域的边界框,并使用注意力引导的切片聚合模块聚合来自所有切片的特征。然后使用不对称感知分类器通过比较左右半球的 ASPECTS 区域来预测中风的存在。回顾性地收集了疑似 AIS 患者的预处理 NCCT,包括一个主要数据集 (n = 170) 和一个外部验证数据集 (n = 90),以专家共识 ASPECTS 读数作为真实值。DGA3-Net 在区域中风识别 (F1 = 0.69) 和 ASPECTS 评估 (Cohen 的加权 Kappa = 0.70) 方面均优于两位专家神经放射科医生。我们的消融研究还验证了所提出模型设计的有效性。此外,可视化技术突出显示的与类别相关的区域与各种既定的定性成像标志高度对应,进一步验证了所学习的表示。本研究表明,深度学习技术在从 NCCT 进行及时和准确的 AIS 诊断方面具有潜力,这可以极大地改善 AIS 患者的治疗质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3ca/10225927/d6426051189d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验