Suppr超能文献

基于机器学习的急性缺血性脑卒中患者非对比 CT 扫描的 ASPECTS 自动化评估。

Automated ASPECTS on Noncontrast CT Scans in Patients with Acute Ischemic Stroke Using Machine Learning.

机构信息

From the Calgary Stroke Program (H.K., W.Q., M.N., D.C., N.M., M.G., M.D.H., A.M.D., B.K.M.).

Department of Neurology (S.I.S.), Keimyung University, Daegu, South Korea.

出版信息

AJNR Am J Neuroradiol. 2019 Jan;40(1):33-38. doi: 10.3174/ajnr.A5889. Epub 2018 Nov 29.

Abstract

BACKGROUND AND PURPOSE

Alberta Stroke Program Early CT Score (ASPECTS) was devised as a systematic method to assess the extent of early ischemic change on noncontrast CT (NCCT) in patients with acute ischemic stroke (AIS). Our aim was to automate ASPECTS to objectively score NCCT of AIS patients.

MATERIALS AND METHODS

We collected NCCT images with a 5-mm thickness of 257 patients with acute ischemic stroke (<8 hours from onset to scans) followed by a diffusion-weighted imaging acquisition within 1 hour. Expert ASPECTS readings on DWI were used as ground truth. Texture features were extracted from each ASPECTS region of the 157 training patient images to train a random forest classifier. The unseen 100 testing patient images were used to evaluate the performance of the trained classifier. Statistical analyses on the total ASPECTS and region-level ASPECTS were conducted.

RESULTS

For the total ASPECTS of the unseen 100 patients, the intraclass correlation coefficient between the automated ASPECTS method and DWI ASPECTS scores of expert readings was 0.76 (95% confidence interval, 0.67-0.83) and the mean ASPECTS difference in the Bland-Altman plot was 0.3 (limits of agreement, -3.3, 2.6). Individual ASPECTS region-level analysis showed that our method yielded κ = 0.60, sensitivity of 66.2%, specificity of 91.8%, and area under curve of 0.79 for 100 × 10 ASPECTS regions. Additionally, when ASPECTS was dichotomized (>4 and ≤4), κ = 0.78, sensitivity of 97.8%, specificity of 80%, and area under the curve of 0.89 were generated between the proposed method and expert readings on DWI.

CONCLUSIONS

The proposed automated ASPECTS scoring approach shows reasonable ability to determine ASPECTS on NCCT images in patients presenting with acute ischemic stroke.

摘要

背景与目的

阿尔伯塔卒中项目早期 CT 评分(ASPECTS)是一种系统方法,用于评估急性缺血性卒中(AIS)患者非对比 CT(NCCT)上早期缺血性改变的程度。我们的目的是自动化 ASPECTS,以客观地对 AIS 患者的 NCCT 进行评分。

材料与方法

我们收集了 257 例急性缺血性卒中患者(发病后<8 小时至扫描)的 NCCT 图像,厚度为 5mm,随后在 1 小时内进行弥散加权成像(DWI)采集。DWI 上的专家 ASPECTS 读数被用作金标准。从 157 例训练患者图像的每个 ASPECTS 区域中提取纹理特征,以训练随机森林分类器。未见过的 100 例测试患者图像用于评估训练分类器的性能。对总 ASPECTS 和区域级 ASPECTS 进行了统计分析。

结果

对于 100 例未见过的患者的总 ASPECTS,自动化 ASPECTS 方法与专家阅读的 DWI ASPECTS 评分之间的组内相关系数为 0.76(95%置信区间,0.67-0.83),Bland-Altman 图中的平均 ASPECTS 差异为 0.3(一致性界限,-3.3,2.6)。个别 ASPECTS 区域级分析表明,我们的方法产生κ=0.60,敏感性为 66.2%,特异性为 91.8%,100×10 ASPECTS 区域的曲线下面积为 0.79。此外,当 ASPECTS 分为>4 和≤4 时,在提出的方法与 DWI 上的专家阅读之间生成了κ=0.78,敏感性为 97.8%,特异性为 80%,曲线下面积为 0.89。

结论

所提出的自动化 ASPECTS 评分方法在确定急性缺血性卒中患者的 NCCT 图像 ASPECTS 方面具有合理的能力。

相似文献

引用本文的文献

2

本文引用的文献

7
Randomized assessment of rapid endovascular treatment of ischemic stroke.随机评估缺血性脑卒中的血管内治疗。
N Engl J Med. 2015 Mar 12;372(11):1019-30. doi: 10.1056/NEJMoa1414905. Epub 2015 Feb 11.
8
Prediction of stroke thrombolysis outcome using CT brain machine learning.使用脑部CT机器学习预测中风溶栓结果
Neuroimage Clin. 2014 Mar 30;4:635-40. doi: 10.1016/j.nicl.2014.02.003. eCollection 2014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验