Suppr超能文献

鉴定可切换酵母亚砷酸盐转运蛋白 Acr3 底物选择性的氨基酸取代。

Identification of amino acid substitutions that toggle substrate selectivity of the yeast arsenite transporter Acr3.

机构信息

Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland.

Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland.

出版信息

J Hazard Mater. 2023 Aug 15;456:131653. doi: 10.1016/j.jhazmat.2023.131653. Epub 2023 May 18.

Abstract

The Acr3 protein family plays a crucial role in metalloid detoxification and includes members from bacteria to higher plants. Most of the Acr3 transporters studied so far are specific for arsenite, whereas Acr3 from budding yeast also shows some capacity to transport antimonite. However, the molecular basis of Acr3 substrate specificity remains poorly understood. By analyzing randomly generated and rationally designed yeast Acr3 variants, critical residues determining substrate specificity were identified for the first time. Replacement of Val173 with Ala abolished antimonite transport without affecting arsenite extrusion. In contrast, substitution of Glu353 with Asp resulted in a loss of arsenite transport activity and a concomitant increase in antimonite translocation capacity. Importantly, Val173 is located close to the hypothetical substrate binding site, whereas Glu353 has been proposed to participate in substrate binding. Identification of key residues conferring substrate selectivity provides a valuable starting point for further studies of the Acr3 family and may have implications for the development of biotechnological applications in metalloid remediation. Moreover, our data contribute to understanding why members of the Acr3 family evolved as arsenite-specific transporters in an environment of ubiquitously present arsenic and trace amounts of antimony.

摘要

Acr3 蛋白家族在类金属解毒中起着至关重要的作用,包括从细菌到高等植物的成员。迄今为止研究过的大多数 Acr3 转运蛋白都特异性地针对亚砷酸盐,而芽殖酵母的 Acr3 也显示出一定的转运锑酸盐的能力。然而,Acr3 底物特异性的分子基础仍知之甚少。通过分析随机生成和合理设计的酵母 Acr3 变体,首次确定了决定底物特异性的关键残基。用丙氨酸取代 Val173 会消除锑酸盐的转运,而不影响亚砷酸盐的排出。相比之下,用天冬氨酸取代 Glu353 会导致亚砷酸盐转运活性丧失,同时锑酸盐转运能力增加。重要的是,Val173 位于假定的底物结合位点附近,而 Glu353 被提议参与底物结合。鉴定赋予底物选择性的关键残基为进一步研究 Acr3 家族提供了有价值的起点,并可能对开发用于类金属修复的生物技术应用具有重要意义。此外,我们的数据有助于理解为什么 Acr3 家族的成员在普遍存在砷和痕量锑的环境中进化为特异性的亚砷酸盐转运蛋白。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验