Suppr超能文献

外排转运蛋白 ArsK 负责细菌对亚砷酸盐、锑酸盐、三价洛克沙胂和甲基砷酸盐的抗性。

Efflux Transporter ArsK Is Responsible for Bacterial Resistance to Arsenite, Antimonite, Trivalent Roxarsone, and Methylarsenite.

机构信息

State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.

Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, Fujian, China.

出版信息

Appl Environ Microbiol. 2018 Nov 30;84(24). doi: 10.1128/AEM.01842-18. Print 2018 Dec 15.

Abstract

Arsenic-resistant bacteria have evolved various efflux systems for arsenic resistance. Five arsenic efflux proteins, ArsB, Acr3, ArsP, ArsJ, and MSF1, have been reported. In this study, comprehensive analyses were performed to study the function of a putative major facilitator superfamily gene, , and the regulation of transcriptional expression in GW4. We found that (i) is located on an arsenic gene island in strain GW4. ArsK orthologs are widely distributed in arsenic-resistant bacteria and are phylogenetically divergent from the five reported arsenic efflux proteins, indicating that it may be a novel arsenic efflux transporter. (ii) Reporter gene assays showed that the expression of was induced by arsenite [As(III)], antimonite [Sb(III)], trivalent roxarsone [Rox(III)], methylarsenite [MAs(III)], and arsenate [As(V)]. (iii) Heterologous expression of ArsK in an arsenic-hypersensitive strain showed that ArsK was essential for resistance to As(III), Sb(III), Rox(III), and MAs(III) but not to As(V), dimethylarsenite [dimethyl-As(III)], or Cd(II). (iv) ArsK reduced the cellular accumulation of As(III), Sb(III), Rox(III), and MAs(III) but not to As(V) or dimethyl-As(III). (v) A putative arsenic regulator gene was cotranscribed with , and (vi) ArsR2 interacted with the promoter region without metalloids and was derepressed by As(III), Sb(III), Rox(III), and MAs(III), indicating the repression activity of ArsR2 for the transcription of These results demonstrate that ArsK is a novel arsenic efflux protein for As(III), Sb(III), Rox(III), and MAs(III) and is regulated by ArsR2. Bacteria use the operon for resistance to several trivalent arsenicals or antimonials. The metalloid extrusion systems are very important bacterial resistance mechanisms. Each of the previously reported ArsB, Acr3, ArsP, ArsJ, and MSF1 transport proteins conferred only inorganic or organic arsenic/antimony resistance. In contrast, ArsK confers resistance to several inorganic and organic trivalent arsenicals and antimonials. The identification of the novel efflux transporter ArsK enriches our understanding of bacterial resistance to trivalent arsenite [As(III)], antimonite [Sb(III)], trivalent roxarsone [Rox(III)], and methylarsenite [MAs(III)].

摘要

砷抗性细菌已经进化出各种外排系统来抵抗砷。已经报道了五种砷外排蛋白,即 ArsB、Acr3、ArsP、ArsJ 和 MSF1。在这项研究中,我们进行了全面的分析,以研究假定的主要易化因子超家族基因的功能,以及 GW4 中 的转录表达调控。我们发现:(i) 在菌株 GW4 中的砷基因岛上定位。ArsK 同源物广泛分布于砷抗性细菌中,与报道的五种砷外排蛋白在系统发育上存在分歧,表明它可能是一种新型砷外排转运蛋白。(ii) 报告基因分析表明,砷化物 [As(III)]、锑化物 [Sb(III)]、三价罗克沙森 [Rox(III)]、甲基砷化物 [MAs(III)] 和砷酸盐 [As(V)]诱导 的表达。(iii) 在砷敏感 菌株中异源表达 ArsK 表明,ArsK 对于抵抗 As(III)、Sb(III)、Rox(III)和 MAs(III)是必需的,但对于 As(V)、二甲基砷化物 [二甲基-As(III)]或 Cd(II)则不是必需的。(iv) ArsK 降低了 As(III)、Sb(III)、Rox(III)和 MAs(III)的细胞积累,但对 As(V)或二甲基-As(III)则没有。(v) 一个假定的砷调节基因 与 共转录,(vi) ArsR2 与 启动子区域结合而没有金属,但被 As(III)、Sb(III)、Rox(III)和 MAs(III)去阻遏,表明 ArsR2 对 的转录具有抑制活性。这些结果表明,ArsK 是一种新型砷外排蛋白,可用于 As(III)、Sb(III)、Rox(III)和 MAs(III),并受 ArsR2 调控。细菌使用 操纵子来抵抗几种三价砷化物或锑化物。外排金属系统是非常重要的细菌抗性机制。以前报道的 ArsB、Acr3、ArsP、ArsJ 和 MSF1 转运蛋白仅赋予无机或有机砷/锑抗性。相比之下,ArsK 赋予对几种无机和有机三价砷化物和锑化物的抗性。新型外排转运蛋白 ArsK 的鉴定丰富了我们对细菌抵抗三价亚砷酸盐 [As(III)]、亚锑酸盐 [Sb(III)]、三价罗克沙森 [Rox(III)]和甲基砷酸盐 [MAs(III)]的理解。

相似文献

1
Efflux Transporter ArsK Is Responsible for Bacterial Resistance to Arsenite, Antimonite, Trivalent Roxarsone, and Methylarsenite.
Appl Environ Microbiol. 2018 Nov 30;84(24). doi: 10.1128/AEM.01842-18. Print 2018 Dec 15.
2
A Sb(III)-specific efflux transporter from Ensifer adhaerens E-60.
Microbiol Res. 2024 Sep;286:127830. doi: 10.1016/j.micres.2024.127830. Epub 2024 Jul 5.
3
ArsP: a methylarsenite efflux permease.
Mol Microbiol. 2015 Nov;98(4):625-35. doi: 10.1111/mmi.13145. Epub 2015 Aug 22.
4
Identification of a MarR Subfamily That Regulates Arsenic Resistance Genes.
Appl Environ Microbiol. 2021 Nov 24;87(24):e0158821. doi: 10.1128/AEM.01588-21. Epub 2021 Oct 6.
6
Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258.
J Bacteriol. 1992 Jun;174(11):3684-94. doi: 10.1128/jb.174.11.3684-3694.1992.
7
A novel MAs(III)-selective ArsR transcriptional repressor.
Mol Microbiol. 2017 Nov;106(3):469-478. doi: 10.1111/mmi.13826. Epub 2017 Sep 13.
8
Efflux proteins MacAB confer resistance to arsenite and penicillin/macrolide-type antibiotics in Agrobacterium tumefaciens 5A.
World J Microbiol Biotechnol. 2019 Jul 22;35(8):115. doi: 10.1007/s11274-019-2689-7.
9
Regulation of antimonite oxidation and resistance by the phosphate regulator PhoB in Agrobacterium tumefaciens GW4.
Microbiol Res. 2019 Sep;226:10-18. doi: 10.1016/j.micres.2019.04.008. Epub 2019 Apr 25.

引用本文的文献

1
Isolation of a potentially arsenic-resistant Halomonas elongata strain (ml10562) from hypersaline systems in the Peruvian Andes, Cusco.
PLoS One. 2025 Apr 16;20(4):e0320639. doi: 10.1371/journal.pone.0320639. eCollection 2025.
4
Growth substrate limitation enhances anaerobic arsenic methylation by strain EML.
Appl Environ Microbiol. 2024 Dec 18;90(12):e0096124. doi: 10.1128/aem.00961-24. Epub 2024 Nov 8.
5
Adaptation to metal(loid)s in strain Mucilaginibacter rubeus P2 involves novel arsenic resistance genes and mechanisms.
J Hazard Mater. 2024 Jan 15;462:132796. doi: 10.1016/j.jhazmat.2023.132796. Epub 2023 Oct 16.
6
Widespread Distribution of the Gene Confers Bacterial Resistance to Environmental Antimony.
Environ Sci Technol. 2023 Oct 3;57(39):14579-14588. doi: 10.1021/acs.est.3c03458. Epub 2023 Sep 22.
7
Antimony efflux underpins phosphorus cycling and resistance of phosphate-solubilizing bacteria in mining soils.
ISME J. 2023 Aug;17(8):1278-1289. doi: 10.1038/s41396-023-01445-6. Epub 2023 Jun 3.
8
The ArsQ permease and transport of the antibiotic arsinothricin.
Mol Microbiol. 2023 Apr;119(4):505-514. doi: 10.1111/mmi.15045. Epub 2023 Feb 24.
9
Biochemical, genomic and structural characteristics of the Acr3 pump in strains isolated from arsenic-rich Salar de Huasco sediments.
Front Microbiol. 2022 Nov 3;13:1047283. doi: 10.3389/fmicb.2022.1047283. eCollection 2022.

本文引用的文献

1
Signature Arsenic Detoxification Pathways in sp. Strain GFAJ-1.
mBio. 2018 May 1;9(3):e00515-18. doi: 10.1128/mBio.00515-18.
3
Comparative Genomic Analysis Reveals Organization, Function and Evolution of Genes in spp.
Front Microbiol. 2017 Mar 21;8:471. doi: 10.3389/fmicb.2017.00471. eCollection 2017.
6
A novel pathway of arsenate detoxification.
Mol Microbiol. 2016 Jun;100(6):928-30. doi: 10.1111/mmi.13395. Epub 2016 Apr 29.
7
Regulatory Activities of Four ArsR Proteins in Agrobacterium tumefaciens 5A.
Appl Environ Microbiol. 2016 May 31;82(12):3471-3480. doi: 10.1128/AEM.00262-16. Print 2016 Jun 15.
9
Arsenic and Environmental Health: State of the Science and Future Research Opportunities.
Environ Health Perspect. 2016 Jul;124(7):890-9. doi: 10.1289/ehp.1510209. Epub 2015 Nov 20.
10
Regulation of arsenite oxidation by the phosphate two-component system PhoBR in Halomonas sp. HAL1.
Front Microbiol. 2015 Sep 9;6:923. doi: 10.3389/fmicb.2015.00923. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验