Suppr超能文献

KNeMAP:一种基于网络映射的方法,用于对转录组谱进行知识驱动的比较。

KNeMAP: a network mapping approach for knowledge-driven comparison of transcriptomic profiles.

机构信息

Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland.

BioMediTech Institute, Tampere University, 33520 Tampere, Finland.

出版信息

Bioinformatics. 2023 Jun 1;39(6). doi: 10.1093/bioinformatics/btad341.

Abstract

MOTIVATION

Transcriptomic data can be used to describe the mechanism of action (MOA) of a chemical compound. However, omics data tend to be complex and prone to noise, making the comparison of different datasets challenging. Often, transcriptomic profiles are compared at the level of individual gene expression values, or sets of differentially expressed genes. Such approaches can suffer from underlying technical and biological variance, such as the biological system exposed on or the machine/method used to measure gene expression data, technical errors and further neglect the relationships between the genes. We propose a network mapping approach for knowledge-driven comparison of transcriptomic profiles (KNeMAP), which combines genes into similarity groups based on multiple levels of prior information, hence adding a higher-level view onto the individual gene view. When comparing KNeMAP with fold change (expression) based and deregulated gene set-based methods, KNeMAP was able to group compounds with higher accuracy with respect to prior information as well as is less prone to noise corrupted data.

RESULT

We applied KNeMAP to analyze the Connectivity Map dataset, where the gene expression changes of three cell lines were analyzed after treatment with 676 drugs as well as the Fortino et al. dataset where two cell lines with 31 nanomaterials were analyzed. Although the expression profiles across the biological systems are highly different, KNeMAP was able to identify sets of compounds that induce similar molecular responses when exposed on the same biological system.

AVAILABILITY AND IMPLEMENTATION

Relevant data and the KNeMAP function is available at: https://github.com/fhaive/KNeMAP and 10.5281/zenodo.7334711.

摘要

动机

转录组数据可用于描述化合物的作用机制(MOA)。然而,组学数据往往复杂且容易受到噪声的影响,这使得不同数据集的比较具有挑战性。通常,转录组谱在单个基因表达值或差异表达基因集的水平上进行比较。这种方法可能会受到潜在的技术和生物学差异的影响,例如暴露的生物系统或用于测量基因表达数据的机器/方法、技术误差,并且进一步忽略了基因之间的关系。我们提出了一种用于转录组谱的知识驱动比较的网络映射方法(KNeMAP),该方法基于多个层次的先验信息将基因组合成相似性组,从而在单个基因视图之上添加更高层次的视图。在将 KNeMAP 与基于折叠变化(表达)和基于失调基因集的方法进行比较时,KNeMAP 能够更准确地根据先验信息对化合物进行分组,并且不易受到噪声污染数据的影响。

结果

我们应用 KNeMAP 分析了 Connectivity Map 数据集,其中分析了三种细胞系在 676 种药物处理后的基因表达变化以及 Fortino 等人的数据集,其中两种细胞系用 31 种纳米材料进行了分析。尽管跨生物系统的表达谱高度不同,但 KNeMAP 能够识别出在相同生物系统上暴露时诱导相似分子反应的化合物集。

可用性和实现

相关数据和 KNeMAP 功能可在以下网址获得:https://github.com/fhaive/KNeMAP 和 10.5281/zenodo.7334711。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fa6/10243850/3b9d0590d80e/btad341f1.jpg

相似文献

1
KNeMAP: a network mapping approach for knowledge-driven comparison of transcriptomic profiles.
Bioinformatics. 2023 Jun 1;39(6). doi: 10.1093/bioinformatics/btad341.
2
Navigating Transcriptomic Connectivity Mapping Workflows to Link Chemicals with Bioactivities.
Chem Res Toxicol. 2022 Nov 21;35(11):1929-1949. doi: 10.1021/acs.chemrestox.2c00245. Epub 2022 Oct 27.
6
Machine Learning Uses Chemo-Transcriptomic Profiles to Stratify Antimalarial Compounds With Similar Mode of Action.
Front Cell Infect Microbiol. 2021 Jun 29;11:688256. doi: 10.3389/fcimb.2021.688256. eCollection 2021.
8
MetaOmics: analysis pipeline and browser-based software suite for transcriptomic meta-analysis.
Bioinformatics. 2019 May 1;35(9):1597-1599. doi: 10.1093/bioinformatics/bty825.
10
sepal: identifying transcript profiles with spatial patterns by diffusion-based modeling.
Bioinformatics. 2021 Sep 9;37(17):2644-2650. doi: 10.1093/bioinformatics/btab164.

引用本文的文献

1
Reconciling multiple connectivity-based systems biology methods for drug repurposing.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf387.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验