Suppr超能文献

萼片:通过基于扩散的建模识别具有空间模式的转录本谱。

sepal: identifying transcript profiles with spatial patterns by diffusion-based modeling.

作者信息

Andersson Alma, Lundeberg Joakim

机构信息

Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm 114 28, Sweden.

出版信息

Bioinformatics. 2021 Sep 9;37(17):2644-2650. doi: 10.1093/bioinformatics/btab164.

Abstract

MOTIVATION

Collection of spatial signals in large numbers has become a routine task in multiple omics-fields, but parsing of these rich datasets still pose certain challenges. In whole or near-full transcriptome spatial techniques, spurious expression profiles are intermixed with those exhibiting an organized structure. To distinguish profiles with spatial patterns from the background noise, a metric that enables quantification of spatial structure is desirable. Current methods designed for similar purposes tend to be built around a framework of statistical hypothesis testing, hence we were compelled to explore a fundamentally different strategy.

RESULTS

We propose an unexplored approach to analyze spatial transcriptomics data, simulating diffusion of individual transcripts to extract genes with spatial patterns. The method performed as expected when presented with synthetic data. When applied to real data, it identified genes with distinct spatial profiles, involved in key biological processes or characteristic for certain cell types. Compared to existing methods, ours seemed to be less informed by the genes' expression levels and showed better time performance when run with multiple cores.

AVAILABILITYAND IMPLEMENTATION

Open-source Python package with a command line interface (CLI), freely available at https://github.com/almaan/sepal under an MIT licence. A mirror of the GitHub repository can be found at Zenodo, doi: 10.5281/zenodo.4573237.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

在多个组学领域,大量空间信号的收集已成为一项常规任务,但解析这些丰富的数据集仍面临一定挑战。在全转录组或接近全转录组的空间技术中,虚假的表达谱与那些呈现组织结构的表达谱相互混杂。为了将具有空间模式的谱与背景噪声区分开来,需要一种能够量化空间结构的指标。目前为类似目的设计的方法往往围绕统计假设检验框架构建,因此我们不得不探索一种根本不同的策略。

结果

我们提出了一种未被探索的方法来分析空间转录组学数据,模拟单个转录本的扩散以提取具有空间模式的基因。当处理合成数据时,该方法表现符合预期。应用于真实数据时,它识别出具有独特空间谱的基因,这些基因参与关键生物学过程或特定细胞类型的特征。与现有方法相比,我们的方法似乎受基因表达水平的影响较小,并且在使用多个核心运行时具有更好的时间性能。

可用性与实现

具有命令行界面(CLI)的开源Python包,根据MIT许可在https://github.com/almaan/sepal上免费提供。GitHub仓库的镜像可在Zenodo上找到,doi: 10.5281/zenodo.4573237。

补充信息

补充数据可在《生物信息学》在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5481/8428601/3273bb4eecb6/btab164f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验