Department of Communication and Journalism, University of Missouri-Kansas City, 202 Haag Hall, 5120 Rockhill Road, 816-235-2735, Kansas City, MO, 64110, USA.
Department of Advertising, Public Relations & Media Design, University of Colorado Boulder, 478 UCB, 1511 University Avenue, Boulder, CO, 80309-0200, USA.
BMC Public Health. 2023 May 24;23(1):935. doi: 10.1186/s12889-023-15882-7.
The COVID-19 pandemic was a "wake up" call for public health agencies. Often, these agencies are ill-prepared to communicate with target audiences clearly and effectively for community-level activations and safety operations. The obstacle is a lack of data-driven approaches to obtaining insights from local community stakeholders. Thus, this study suggests a focus on listening at local levels given the abundance of geo-marked data and presents a methodological solution to extracting consumer insights from unstructured text data for health communication.
This study demonstrates how to combine human and Natural Language Processing (NLP) machine analyses to reliably extract meaningful consumer insights from tweets about COVID and the vaccine. This case study employed Latent Dirichlet Allocation (LDA) topic modeling, Bidirectional Encoder Representations from Transformers (BERT) emotion analysis, and human textual analysis and examined 180,128 tweets scraped by Twitter Application Programming Interface's (API) keyword function from January 2020 to June 2021. The samples came from four medium-sized American cities with larger populations of people of color.
The NLP method discovered four topic trends: "COVID Vaccines," "Politics," "Mitigation Measures," and "Community/Local Issues," and emotion changes over time. The human textual analysis profiled the discussions in the selected four markets to add some depth to our understanding of the uniqueness of the different challenges experienced.
This study ultimately demonstrates that our method used here could efficiently reduce a large amount of community feedback (e.g., tweets, social media data) by NLP and ensure contextualization and richness with human interpretation. Recommendations on communicating vaccination are offered based on the findings: (1) the strategic objective should be empowering the public; (2) the message should have local relevance; and, (3) communication needs to be timely.
COVID-19 大流行是公共卫生机构的一个“警钟”。这些机构通常缺乏清晰有效地与目标受众沟通的能力,无法在社区层面开展活动和实施安全措施。障碍在于缺乏数据驱动的方法来从当地社区利益相关者那里获得见解。因此,鉴于大量地理标记数据的存在,本研究建议在地方层面上关注倾听,并提出了一种从健康传播的非结构化文本数据中提取消费者见解的方法解决方案。
本研究展示了如何结合人工和自然语言处理 (NLP) 机器分析,从有关 COVID 和疫苗的推文中可靠地提取有意义的消费者见解。该案例研究采用了潜在狄利克雷分配 (LDA) 主题建模、来自转换器的双向编码器表示 (BERT) 情感分析以及人工文本分析,并检查了 2020 年 1 月至 2021 年 6 月通过 Twitter 应用程序编程接口 (API) 关键字功能抓取的 180,128 条推文。样本来自四个中等规模的美国城市,这些城市的有色人种人口较多。
NLP 方法发现了四个主题趋势:“COVID 疫苗”、“政治”、“缓解措施”和“社区/地方问题”,以及随着时间的推移情绪的变化。人工文本分析对所选四个市场的讨论进行了分析,以增加我们对不同地区所经历的独特挑战的理解。
本研究最终证明,我们在这里使用的方法可以通过 NLP 高效地减少大量社区反馈(例如推文、社交媒体数据),并通过人工解释确保上下文和丰富性。根据研究结果提出了关于疫苗接种沟通的建议:(1)战略目标应该是赋予公众权力;(2)信息应该具有地方相关性;(3)沟通需要及时。