Suppr超能文献

升高的 CO 改变了纳米 ZnO 对番茄(Solanum lycopersicum L.)根际土壤中细菌和真菌组成的诱导影响。

Elevated CO altered the nano-ZnO-induced influence on bacterial and fungal composition in tomato (Solanum lycopersicum L.) rhizosphere soils.

机构信息

Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.

Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.

出版信息

Environ Sci Pollut Res Int. 2023 Jun;30(30):75894-75907. doi: 10.1007/s11356-023-27744-1. Epub 2023 May 25.

Abstract

To investigate whether elevated CO (eCO) changes the influence of nanoparticles (NPs) on soil microbial communities and the mechanisms, various nano-ZnO (0, 100, 300, and 500 mg·kg) and CO concentrations (400 and 800 µmol·mol) were applied to tomato plants (Solanum lycopersicum L.) in growth chambers. Plant growth, soil biochemical properties, and rhizosphere soil microbial community composition were analyzed. In 500 mg·kg nano-ZnO-treated soils, root Zn content was 58% higher, while total dry weight (TDW) was 39.8% lower under eCO than under atmospheric CO (aCO). Compared with the control, the interaction of eCO and 300 mg·kg nano-ZnO decreased and increased bacterial and fungal alpha diversities, respectively, which was caused by the direct effect of nano-ZnO (r =  - 1.47, p < 0.01). Specifically, the bacterial OTUs decreased from 2691 to 2494, while fungal OTUs increased from 266 to 307, when 800-300 was compared with 400-0 treatment. eCO enhanced the influence of nano-ZnO on bacterial community structure, while only eCO significantly shaped fungal composition. In detail, nano-ZnO explained 32.4% of the bacterial variations, while the interaction of CO and nano-ZnO explained 47.9%. Betaproteobacteria, which are involved in C, N, and S cycling, and r-strategists, such as Alpha- and Gammaproteobacteria and Bacteroidetes, significantly decreased under 300 mg·kg nano-ZnO, confirming reduced root secretions. In contrast, Alpha- and Gammaproteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria were enriched in 300 mg·kg nano-ZnO under eCO, suggesting greater adaptation to both nano-ZnO and eCO. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) analysis demonstrated that bacterial functionality was unchanged under short-term nano-ZnO and eCO exposure. In conclusion, nano-ZnO significantly affected microbial diversities and the bacterial composition, and eCO intensified the damage of nano-ZnO, while the bacterial functionality was not changed in this study.

摘要

为了研究高浓度二氧化碳(eCO)是否会改变纳米颗粒(NPs)对土壤微生物群落的影响及其机制,本研究在温室中向番茄植株(Solanum lycopersicum L.)施加不同浓度的纳米 ZnO(0、100、300 和 500mg·kg)和二氧化碳(400 和 800μmol·mol)。分析了植物生长、土壤生化特性和根际土壤微生物群落组成。在 500mg·kg 的纳米 ZnO 处理土壤中,与大气 CO(aCO)相比,eCO 下的根 Zn 含量增加了 58%,而总干重(TDW)降低了 39.8%。与对照相比,eCO 和 300mg·kg 纳米 ZnO 的相互作用分别降低和增加了细菌和真菌的 alpha 多样性,这是由纳米 ZnO 的直接作用引起的(r = -1.47,p < 0.01)。具体来说,当比较 800-300 与 400-0 处理时,细菌 OTUs 从 2691 减少到 2494,而真菌 OTUs 从 266 增加到 307。eCO 增强了纳米 ZnO 对细菌群落结构的影响,而只有 eCO 显著改变了真菌组成。具体来说,纳米 ZnO 解释了细菌变化的 32.4%,而 CO 和纳米 ZnO 的相互作用解释了 47.9%。参与 C、N 和 S 循环的 Betaproteobacteria 和 r-策略者,如 Alpha-和 Gammaproteobacteria 和 Bacteroidetes,在 300mg·kg 纳米 ZnO 下显著减少,证实了根分泌物减少。相比之下,在 eCO 下,300mg·kg 纳米 ZnO 中 Alpha-和 Gammaproteobacteria、Bacteroidetes、Chloroflexi 和 Acidobacteria 富集,表明对纳米 ZnO 和 eCO 的适应性更强。未观察状态重建的群落系统发育分析 2(PICRUSt2)分析表明,在短期纳米 ZnO 和 eCO 暴露下,细菌功能没有改变。总之,纳米 ZnO 显著影响微生物多样性和细菌组成,eCO 加剧了纳米 ZnO 的破坏,但在本研究中,细菌功能没有改变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验