Department of Neuroscience, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3401, USA.
Department of Neuroscience, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
Hum Mol Genet. 2023 Aug 7;32(16):2587-2599. doi: 10.1093/hmg/ddad085.
Reticulon (RTN) proteins are a family of proteins biochemically identified for shaping tubular endoplasmic reticulum, a subcellular structure important for vesicular transport and cell-to-cell communication. In our recent study of mice with knockout of both reticulon 1 (Rtn1) and Rtn3, we discovered that Rtn1-/-;Rtn3-/- (brief as R1R3dKO) mice exhibited neonatal lethality, despite the fact that mice deficient in either RTN1 or RTN3 alone exhibit no discernible phenotypes. This has been the first case to find early lethality in animals with deletion of partial members of RTN proteins. The complete penetrance for neonatal lethality can be attributed to multiple defects including the impaired neuromuscular junction found in the diaphragm. We also observed significantly impaired axonal growth in a regional-specific manner, detected by immunohistochemical staining with antibodies to neurofilament light chain and neurofilament medium chain. Ultrastructural examination by electron microscopy revealed a significant reduction in synaptic active zone length in the hippocampus. Mechanistic exploration by unbiased proteomic assays revealed reduction of proteins such as FMR1, Staufen2, Cyfip1, Cullin-4B and PDE2a, which are known components in the fragile X mental retardation pathway. Together, our results reveal that RTN1 and RTN3 are required to orchestrate neurofilament organization and intact synaptic structure of the central nervous system.
Reticulon (RTN) 蛋白是一组在生化上被鉴定为塑造管状内质网的蛋白,内质网是一种对囊泡运输和细胞间通讯很重要的亚细胞结构。在我们最近对同时敲除 reticulon 1 (Rtn1) 和 Rtn3 的小鼠的研究中,我们发现 Rtn1-/-;Rtn3-/- (简称 R1R3dKO) 小鼠表现出新生期致死性,尽管单独缺乏 RTN1 或 RTN3 的小鼠没有表现出明显的表型。这是首次在 RTN 蛋白部分缺失的动物中发现早期致死性的情况。新生期致死性的完全外显率可归因于多种缺陷,包括在膈神经肌肉接头中发现的受损。我们还观察到以区域特异性方式显著受损的轴突生长,通过用神经丝轻链和神经丝中间链抗体进行免疫组织化学染色来检测。电子显微镜的超微结构检查显示海马体中突触活性区长度显著减少。通过无偏蛋白质组学检测进行的机制探索揭示了 FMR1、Staufen2、Cyfip1、Cullin-4B 和 PDE2a 等蛋白质的减少,这些蛋白质是脆性 X 智力低下途径中的已知成分。总之,我们的结果表明 RTN1 和 RTN3 是协调神经丝组织和中枢神经系统完整突触结构所必需的。