文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的糖酵解相关分子分类揭示了结直肠癌患者预后、TME 和免疫治疗的差异。

Machine learning-based glycolysis-associated molecular classification reveals differences in prognosis, TME, and immunotherapy for colorectal cancer patients.

机构信息

Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.

The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.

出版信息

Front Immunol. 2023 May 5;14:1181985. doi: 10.3389/fimmu.2023.1181985. eCollection 2023.


DOI:10.3389/fimmu.2023.1181985
PMID:37228620
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10203873/
Abstract

BACKGROUND: Aerobic glycolysis is a process that metabolizes glucose under aerobic conditions, finally producing pyruvate, lactic acid, and ATP for tumor cells. Nevertheless, the overall significance of glycolysis-related genes in colorectal cancer and how they affect the immune microenvironment have not been investigated. METHODS: By combining the transcriptome and single-cell analysis, we summarize the various expression patterns of glycolysis-related genes in colorectal cancer. Three glycolysis-associated clusters (GAC) were identified with distinct clinical, genomic, and tumor microenvironment (TME). By mapping GAC to single-cell RNA sequencing analysis (scRNA-seq), we next discovered that the immune infiltration profile of GACs was similar to that of bulk RNA sequencing analysis (bulk RNA-seq). In order to determine the kind of GAC for each sample, we developed the GAC predictor using markers of single cells and GACs that were most pertinent to clinical prognostic indications. Additionally, potential drugs for each GAC were discovered using different algorithms. RESULTS: GAC1 was comparable to the immune-desert type, with a low mutation probability and a relatively general prognosis; GAC2 was more likely to be immune-inflamed/excluded, with more immunosuppressive cells and stromal components, which also carried the risk of the poorest prognosis; Similar to the immune-activated type, GAC3 had a high mutation rate, more active immune cells, and excellent therapeutic potential. CONCLUSION: In conclusion, we combined transcriptome and single-cell data to identify new molecular subtypes using glycolysis-related genes in colorectal cancer based on machine-learning methods, which provided therapeutic direction for colorectal patients.

摘要

背景:有氧糖酵解是一种在有氧条件下代谢葡萄糖的过程,最终为肿瘤细胞产生丙酮酸、乳酸和 ATP。然而,糖酵解相关基因在结直肠癌中的整体意义以及它们如何影响免疫微环境尚未得到研究。

方法:通过整合转录组和单细胞分析,我们总结了结直肠癌中糖酵解相关基因的各种表达模式。鉴定出三个与糖酵解相关的簇(GAC),它们具有不同的临床、基因组和肿瘤微环境(TME)特征。通过将 GAC 映射到单细胞 RNA 测序分析(scRNA-seq),我们发现 GAC 的免疫浸润图谱与 bulk RNA 测序分析(bulk RNA-seq)相似。为了确定每个样本的 GAC 类型,我们使用与单细胞和 GAC 最相关的标记开发了 GAC 预测器,这些标记与临床预后指征有关。此外,使用不同的算法发现了每种 GAC 的潜在药物。

结果:GAC1 与免疫荒漠型相似,突变概率低,预后一般;GAC2 更有可能是免疫炎症/排斥型,具有更多的免疫抑制细胞和基质成分,同时也具有预后最差的风险;与免疫激活型相似,GAC3 具有高突变率、更活跃的免疫细胞和出色的治疗潜力。

结论:总之,我们通过机器学习方法,结合转录组和单细胞数据,利用结直肠癌中与糖酵解相关的基因,鉴定出新的分子亚型,为结直肠癌患者提供了治疗方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/746ec5cd9f38/fimmu-14-1181985-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/2e979aa7d302/fimmu-14-1181985-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/61e4142225e1/fimmu-14-1181985-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/8f7d2a5e28ba/fimmu-14-1181985-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/86bf2da6983a/fimmu-14-1181985-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/562454ea8e25/fimmu-14-1181985-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/6b26e8bf8df0/fimmu-14-1181985-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/8a54c76b4c20/fimmu-14-1181985-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/aa2bef78b5c3/fimmu-14-1181985-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/2ad5ce198f9e/fimmu-14-1181985-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/746ec5cd9f38/fimmu-14-1181985-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/2e979aa7d302/fimmu-14-1181985-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/61e4142225e1/fimmu-14-1181985-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/8f7d2a5e28ba/fimmu-14-1181985-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/86bf2da6983a/fimmu-14-1181985-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/562454ea8e25/fimmu-14-1181985-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/6b26e8bf8df0/fimmu-14-1181985-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/8a54c76b4c20/fimmu-14-1181985-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/aa2bef78b5c3/fimmu-14-1181985-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/2ad5ce198f9e/fimmu-14-1181985-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad9/10203873/746ec5cd9f38/fimmu-14-1181985-g010.jpg

相似文献

[1]
Machine learning-based glycolysis-associated molecular classification reveals differences in prognosis, TME, and immunotherapy for colorectal cancer patients.

Front Immunol. 2023

[2]
Integration of single-cell RNA sequencing and bulk RNA transcriptome sequencing reveals a heterogeneous immune landscape and pivotal cell subpopulations associated with colorectal cancer prognosis.

Front Immunol. 2023

[3]
Development and validation of a personalized classifier to predict the prognosis and response to immunotherapy in glioma based on glycolysis and the tumor microenvironment.

PeerJ. 2023

[4]
Integrative analysis revealed that distinct cuprotosis patterns reshaped tumor microenvironment and responses to immunotherapy of colorectal cancer.

Front Immunol. 2023

[5]
Targeting nucleotide metabolic pathways in colorectal cancer by integrating scRNA-seq, spatial transcriptome, and bulk RNA-seq data.

Funct Integr Genomics. 2024-4-10

[6]
Tumor microenvironment-associated gene C3 can predict the prognosis of colorectal adenocarcinoma: a study based on TCGA.

Clin Transl Oncol. 2021-9

[7]
Ferroptosis-associated molecular classification characterized by distinct tumor microenvironment profiles in colorectal cancer.

Int J Biol Sci. 2022

[8]
Construction and validation of a novel angiogenesis pattern to predict prognosis and immunotherapy efficacy in colorectal cancer.

Aging (Albany NY). 2023-11-7

[9]
Alteration in glycolytic/cholesterogenic gene expression is associated with bladder cancer prognosis and immune cell infiltration.

BMC Cancer. 2022-1-3

[10]
Colorectal Cancer Cell Differentiation Trajectory Predicts Patient Immunotherapy Response and Prognosis.

Cancer Control. 2022

引用本文的文献

[1]
Tumor battlefield within inflamed, excluded or desert immune phenotypes: the mechanisms and strategies.

Exp Hematol Oncol. 2024-8-6

[2]
Elucidating the role of angiogenesis-related genes in colorectal cancer: a multi-omics analysis.

Front Oncol. 2024-6-19

本文引用的文献

[1]
Gemcitabine: An Alternative Treatment for Oxaliplatin-Resistant Colorectal Cancer.

Cancers (Basel). 2022-11-29

[2]
Immunosuppressive role of SPP1-CD44 in the tumor microenvironment of intrahepatic cholangiocarcinoma assessed by single-cell RNA sequencing.

J Cancer Res Clin Oncol. 2023-8

[3]
Taming metabolic competition via glycolysis inhibition for safe and potent tumor immunotherapy.

Biochem Pharmacol. 2022-8

[4]
Construction of a prognostic glycolysis-related lncRNA signature for patients with colorectal cancer.

Cancer Med. 2023-1

[5]
Identification of a Tumor Immunological Phenotype-Related Gene Signature for Predicting Prognosis, Immunotherapy Efficacy, and Drug Candidates in Hepatocellular Carcinoma.

Front Immunol. 2022

[6]
Identification of crucial genes of pyrimidine metabolism as biomarkers for gastric cancer prognosis.

Cancer Cell Int. 2021-12-14

[7]
Single-Cell Transcriptomic Analysis Revealed a Critical Role of SPP1/CD44-Mediated Crosstalk Between Macrophages and Cancer Cells in Glioma.

Front Cell Dev Biol. 2021-11-5

[8]
Shikonin suppresses colon cancer cell growth and exerts synergistic effects by regulating ADAM17 and the IL‑6/STAT3 signaling pathway.

Int J Oncol. 2021-12

[9]
Immunotherapy in colorectal cancer: current achievements and future perspective.

Int J Biol Sci. 2021

[10]
The Role of Cancer-Associated Fibroblasts in Cancer Invasion and Metastasis.

Cancers (Basel). 2021-9-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索