Cayetano Cristobal B, Creencia Lota A, Sullivan Emma, Clewely Daniel, Miller Peter I
College of Fisheries and Aquatic Sciences, Western Philippines University, Sta. Monica, Puerto Princesa City, Palawan, Philippines.
Remote Sensing Group, Plymouth Marine Laboratory, Prospect Place, Plymouth PL4 7QP, UK.
UCL Open Environ. 2023 Apr 28;5:e057. doi: 10.14324/111.444/ucloe.000057. eCollection 2023.
Multi-temporal remote sensing imagery can be used to explore how mangrove assemblages are changing over time and facilitate critical interventions for ecological sustainability and effective management. This study aims to explore the spatial dynamics of mangrove extents in Palawan, Philippines, specifically in Puerto Princesa City, Taytay and Aborlan, and facilitate future predictions for Palawan using the Markov Chain model. The multi-date Landsat imageries during the period 1988-2020 were used for this research. The support vector machine algorithm was sufficiently effective for mangrove feature extraction to generate satisfactory accuracy results (>70% kappa coefficient values; 91% average overall accuracies). In Palawan, a 5.2% (2693 ha) decrease was recorded during 1988-1998 and an 8.6% increase in 2013-2020 to 4371 ha. In Puerto Princesa City, a 95.9% (2758 ha) increase was observed during 1988-1998 and 2.0% (136 ha) decrease during 2013-2020. The mangroves in Taytay and Aborlan both gained an additional 2138 ha (55.3%) and 228 ha (16.8%) during 1988-1998 but also decreased from 2013 to 2020 by 3.4% (247 ha) and 0.2% (3 ha), respectively. However, projected results suggest that the mangrove areas in Palawan will likely increase in 2030 (to 64,946 ha) and 2050 (to 66,972 ha). This study demonstrated the capability of the Markov chain model in the context of ecological sustainability involving policy intervention. However, as this research did not capture the environmental factors that may have influenced the changes in mangrove patterns, it is suggested adding cellular automata in future Markovian mangrove modelling.
多时相遥感影像可用于探究红树林群落如何随时间变化,并促进针对生态可持续性和有效管理的关键干预措施。本研究旨在探究菲律宾巴拉望岛,特别是公主港市、塔亚泰镇和阿博兰镇红树林范围的空间动态,并利用马尔可夫链模型对巴拉望岛未来情况进行预测。本研究使用了1988年至2020年期间的多日期陆地卫星影像。支持向量机算法在红树林特征提取方面足够有效,能够产生令人满意的精度结果(卡帕系数值>70%;平均总体精度为91%)。在巴拉望岛,1988年至1998年期间记录到减少了5.2%(2693公顷),而在2013年至2020年期间增加了8.6%,达到4371公顷。在公主港市,1988年至1998年期间观察到增加了95.9%(2758公顷),而在2013年至2020年期间减少了2.0%(136公顷)。塔亚泰镇和阿博兰镇的红树林在1988年至1998年期间分别额外增加了2138公顷(55.3%)和228公顷(16.8%),但在2013年至2020年期间也分别减少了3.4%(247公顷)和0.2%(3公顷)。然而,预测结果表明,巴拉望岛的红树林面积在2030年(增至64946公顷)和2050年(增至66972公顷)可能会增加。本研究证明了马尔可夫链模型在涉及政策干预的生态可持续性背景下的能力。然而,由于本研究没有捕捉到可能影响红树林格局变化的环境因素,建议在未来的马尔可夫红树林建模中加入细胞自动机。