Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Front Endocrinol (Lausanne). 2023 May 9;14:1165415. doi: 10.3389/fendo.2023.1165415. eCollection 2023.
Insulin resistance in muscle can originate from a sedentary lifestyle, hypercaloric diets, or exposure to endocrine-disrupting pollutants such as arsenic. In skeletal muscle, insulin stimulates glucose uptake by translocating GLUT4 to the sarcolemma. This study aimed to evaluate the alterations induced by sucrose and arsenic exposure in vivo on the pathways involved in insulinstimulated GLUT4 translocation in the quadriceps and gastrocnemius muscles.
Male Wistar rats were treated with 20% sucrose (S), 50 ppm sodium arsenite (A), or both (A+S) in drinking water for 8 weeks. We conducted an intraperitoneal insulin tolerance (ITT) test on the seventh week of treatment. The quadriceps and gastrocnemius muscles were obtained after overnight fasting or 30 min after intraperitoneal insulin injection. We assessed changes in GLUT4 translocation to the sarcolemma by cell fractionation and abundance of the proteins involved in GLUT4 translocation by Western blot.
Male rats consuming S and A+S gained more weight than control and Atreated animals. Rats consuming S, A, and A+S developed insulin resistance assessed through ITT. Neither treatments nor insulin stimulation in the quadriceps produced changes in GLUT4 levels in the sarcolemma and Akt phosphorylation. Conversely, A and A+S decreased protein expression of Tether containing UBX domain for GLUT4 (TUG), and A alone increased calpain-10 expression. All treatments reduced this muscle's protein levels of VAMP2. Conversely, S and A treatment increased basal GLUT4 levels in the sarcolemma of the gastrocnemius, while all treatments inhibited insulin-induced GLUT4 translocation. These effects correlated with lower basal levels of TUG and impaired insulin-stimulated TUG proteolysis. Moreover, animals treated with S had reduced calpain-10 protein levels in this muscle, while A and A+S inhibited insulin-induced Akt phosphorylation.
Arsenic and sucrose induce systemic insulin resistance due to defects in GLUT4 translocation induced by insulin. These defects depend on which muscle is being analyzed, in the quadriceps there were defects in GLUT4 retention and docking while in the gastrocnemius the Akt pathway was impacted by arsenic and the proteolytic pathway was impaired by arsenic and sucrose.
肌肉胰岛素抵抗可能源于久坐的生活方式、高卡路里饮食或暴露于内分泌干扰污染物,如砷。在骨骼肌中,胰岛素通过将 GLUT4 易位到肌膜来刺激葡萄糖摄取。本研究旨在评估体内蔗糖和砷暴露对股四头肌和腓肠肌中胰岛素刺激 GLUT4 易位相关途径的改变。
雄性 Wistar 大鼠用 20%蔗糖(S)、50ppm 亚砷酸钠(A)或两者(A+S)在饮用水中处理 8 周。在治疗的第 7 周进行了腹腔内胰岛素耐量(ITT)试验。在隔夜禁食或腹腔内注射胰岛素 30 分钟后,获得股四头肌和腓肠肌。通过细胞分级分离评估 GLUT4 易位到肌膜的变化,并通过 Western blot 评估参与 GLUT4 易位的蛋白质的丰度。
摄入 S 和 A+S 的雄性大鼠比对照组和 A 处理组体重增加更多。摄入 S、A 和 A+S 的大鼠通过 ITT 评估发生胰岛素抵抗。在股四头肌中,无论是治疗还是胰岛素刺激都没有改变 GLUT4 在肌膜中的水平和 Akt 磷酸化。相反,A 和 A+S 降低了 Tether 含 UBX 结构域的 GLUT4(TUG)的蛋白表达,而 A 单独增加了钙蛋白酶-10 的表达。所有治疗均降低了该肌肉 VAMP2 的蛋白水平。相反,S 和 A 处理增加了腓肠肌肌膜中基础 GLUT4 水平,而所有治疗均抑制了胰岛素诱导的 GLUT4 易位。这些作用与基础 TUG 水平降低和胰岛素刺激的 TUG 蛋白水解受损相关。此外,S 处理的动物在该肌肉中钙蛋白酶-10 的蛋白水平降低,而 A 和 A+S 抑制了胰岛素诱导的 Akt 磷酸化。
砷和蔗糖由于胰岛素诱导的 GLUT4 易位缺陷而导致全身胰岛素抵抗。这些缺陷取决于正在分析的肌肉,在股四头肌中,GLUT4 保留和对接出现缺陷,而在腓肠肌中,Akt 途径受到砷的影响,蛋白水解途径受到砷和蔗糖的损害。