Suppr超能文献

氧气和葡萄糖迫使铁(III)黄素血红蛋白型一氧化氮双加氧酶中的电子转移开关运动。

Dioxygen and glucose force motion of the electron-transfer switch in the iron(III) flavohemoglobin-type nitric oxide dioxygenase.

机构信息

Research and Development Division, Miami Valley Biotech, Suite 2445, 1001 E. 2(nd) Street, Dayton, OH 45402, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, R033, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.

Research and Development Division, Miami Valley Biotech, Suite 2445, 1001 E. 2(nd) Street, Dayton, OH 45402, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, R033, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Chemistry and Biochemistry Department, University of Dayton, 300 College Park, Dayton, OH 45469, USA.

出版信息

J Inorg Biochem. 2023 Aug;245:112257. doi: 10.1016/j.jinorgbio.2023.112257. Epub 2023 May 16.

Abstract

Kinetic and structural investigations of the flavohemoglobin-type NO dioxygenase have suggested critical roles for transient Fe(III)O complex formation and O-forced movements affecting hydride transfer to the FAD cofactor and electron-transfer to the Fe(III)O complex. Stark-effect theory together with structural models and dipole and internal electrostatic field determinations provided a semi-quantitative spectroscopic method for investigating the proposed Fe(III)O complex and O-forced movements. Deoxygenation of the enzyme causes Stark effects on the ferric heme Soret and charge-transfer bands revealing the Fe(III)O complex. Deoxygenation also elicits Stark effects on the FAD that expose forces and motions that create a more restricted NADH access to FAD for hydride transfer and switch electron-transfer off. Glucose also forces the enzyme toward an off state. Amino acid substitutions at the B10, E7, E11, G8, D5, and F7 positions influence the Stark effects of O on resting heme spin states and FAD consistent with the proposed roles of the side chains in the enzyme mechanism. Deoxygenation of ferric myoglobin and hemoglobin A also induces Stark effects on the hemes suggesting a common 'oxy-met' state. The ferric myoglobin and hemoglobin heme spectra are also glucose-responsive. A conserved glucose or glucose-6-phosphate binding site is found bridging the BC-corner and G-helix in flavohemoglobin and myoglobin suggesting novel allosteric effector roles for glucose or glucose-6-phosphate in the NO dioxygenase and O storage functions. The results support the proposed roles of a ferric O intermediate and protein motions in regulating electron-transfer during NO dioxygenase turnover.

摘要

黄素血红蛋白型一氧化氮双加氧酶的动力学和结构研究表明,瞬态 Fe(III)O 络合物的形成和影响氢化物向 FAD 辅因子转移以及电子向 Fe(III)O 络合物转移的 O 强制运动起着关键作用。斯塔克效应理论结合结构模型和偶极子以及内部静电场的测定为研究所提出的 Fe(III)O 络合物和 O 强制运动提供了一种半定量的光谱方法。酶的脱氧会对三价铁血红素 Soret 和电荷转移带产生斯塔克效应,从而揭示 Fe(III)O 络合物。脱氧还会对 FAD 产生斯塔克效应,暴露力和运动,为氢化物转移创造更受限的 NADH 进入 FAD 的通道,并关闭电子转移。葡萄糖也迫使酶进入关闭状态。B10、E7、E11、G8、D5 和 F7 位置的氨基酸取代会影响 O 对静止血红素自旋状态和 FAD 的斯塔克效应,与侧链在酶机制中的作用一致。三价肌红蛋白和血红蛋白 A 的脱氧也会对血红素产生斯塔克效应,表明存在共同的“氧-金属”状态。亚铁肌红蛋白和血红蛋白的血红素光谱也对葡萄糖有反应。在黄素血红蛋白和肌红蛋白中发现了一个保守的葡萄糖或葡萄糖-6-磷酸结合位点,该位点桥接 BC 角和 G-螺旋,这表明葡萄糖或葡萄糖-6-磷酸在一氧化氮双加氧酶和 O 储存功能中具有新的变构效应物作用。这些结果支持了在一氧化氮双加氧酶周转过程中,铁氧中间体和蛋白质运动在调节电子转移中的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验