Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
Neurobiol Dis. 2023 Jul;183:106167. doi: 10.1016/j.nbd.2023.106167. Epub 2023 May 23.
The past 15 years have witnessed an explosion in the studies of biomolecular condensates that are implicated in numerous biological processes and play vital roles in human health and diseases. Recent findings demonstrate that the microtubule-associated protein tau forms liquid condensates through liquid-liquid phase separation (LLPS) in in vitro experiments using purified recombinant proteins and cell-based experiments. Although in vivo studies are lacking, liquid condensates have emerged as an important assembly state of physiological and pathological tau and LLPS can regulate the function of microtubules, mediate stress granule formation, and accelerate tau amyloid aggregation. In this review, we summarize recent advances in tau LLPS, aiming to unveiling the delicate interactions driving tau LLPS. We further discuss the association of tau LLPS with physiology and disease in the context of the sophisticated regulation of tau LLPS. Deciphering the mechanisms underlying tau LLPS and the liquid-to-solid transition enables rational design of molecules that inhibit or delay the formation of tau solid species, thus providing novel targeted therapeutic strategies for tauopathies.
过去 15 年见证了生物分子凝聚物研究的爆炸式增长,这些凝聚物与众多生物过程有关,并在人类健康和疾病中发挥着重要作用。最近的研究结果表明,微管相关蛋白 tau 通过体外实验中使用纯化的重组蛋白和基于细胞的实验中的液-液相分离(LLPS)形成液体凝聚物。尽管缺乏体内研究,但液体凝聚物已成为生理和病理 tau 的重要组装状态,并且 LLPS 可以调节微管的功能,介导应激颗粒的形成,并加速 tau 淀粉样聚集。在这篇综述中,我们总结了 tau LLPS 的最新进展,旨在揭示驱动 tau LLPS 的精细相互作用。我们进一步讨论了 tau LLPS 与生理学和疾病的关联,以及 tau LLPS 的复杂调节。解析 tau LLPS 的机制和液体到固体的转变,能够合理设计抑制或延迟 tau 固体形成的分子,从而为 tau 病提供新的靶向治疗策略。