School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China.
The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China.
ACS Sens. 2023 Jul 28;8(7):2646-2655. doi: 10.1021/acssensors.3c00487. Epub 2023 May 26.
Neuromorphic perception and computing show great promise in terms of energy efficiency and data bandwidth compared to von Neumann's computing architecture. In-sensor computing allows perception information processing at the edge, which is highly dependent on the functional fusion of receptors and neurons. Here, a leaky integrate-and-fire (LIF) artificial spiking sensory neuron (ASSN) based on a NbO memristor and an a-IGZO thin-film transistor (TFT) is successfully developed. The ASSN is fabricated mainly through simple sputter deposition processes, showing the prospect of high process compatibility and potential for integration fabrication. The device shows excellent spike encoding ability to deliver the neuromorphic information through spike rate and time-to-first spike. Moreover, in the ASSN, the a-IGZO TFT not only provides the fundamental spike signal computing function of the artificial neuron but also has NO gas and ultraviolet (UV) light dual sensitivity to introduce the neuromorphic perception capability. As a result, the ASSN successfully exhibits an inhibitory property under NO stimulation while exhibiting an excitatory state under UV light stimulation. Futhermore, self-adaption and lateral regulation circuits between different ASSNs are proposed at the edge in mimicking biological neurons' rich interconnection and feedback mechanisms. The ASSNs successfully achieve self-regulation after a huge response during a burst stimulus. In addition, the neuron transmits a more obvious output when the target-sensitive events occur through the edge internal regulation. The self-adaption and lateral regulation demonstrated in ASSN move an important step forward to in-sensor computing, which provides the potential for a multiscene perception in complex environments.
与冯·诺依曼计算架构相比,神经形态感知和计算在能量效率和数据带宽方面显示出巨大的潜力。传感器内计算允许在边缘进行感知信息处理,这高度依赖于受体和神经元的功能融合。在这里,成功开发了一种基于 NbO 忆阻器和 a-IGZO 薄膜晶体管 (TFT) 的泄漏积分和放电 (LIF) 人工尖峰感觉神经元 (ASSN)。ASSN 主要通过简单的溅射沉积工艺制造,显示出高工艺兼容性和集成制造的潜力。该器件具有出色的尖峰编码能力,通过尖峰率和首次尖峰时间传递神经形态信息。此外,在 ASSN 中,a-IGZO TFT 不仅提供了人工神经元的基本尖峰信号计算功能,而且对 NO 气体和紫外线 (UV) 光具有双重敏感性,从而引入了神经形态感知能力。结果,ASSN 在 NO 刺激下成功表现出抑制特性,而在 UV 光刺激下表现出兴奋状态。此外,在边缘处提出了不同 ASSN 之间的自适应和横向调节电路,以模拟生物神经元丰富的互联和反馈机制。ASSN 在突发刺激期间经历巨大响应后成功实现了自我调节。此外,当目标敏感事件发生时,神经元通过内部调节传递更明显的输出。ASSN 中的自适应和横向调节在传感器内计算方面迈出了重要的一步,为复杂环境中的多场景感知提供了潜力。