Kim Jangsaeng, Park Eun Chan, Shin Wonjun, Koo Ryun-Han, Im Jiseong, Han Chang-Hyeon, Lee Jong-Ho, Kwon Daewoong
Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
Adv Sci (Weinh). 2024 Nov;11(44):e2407870. doi: 10.1002/advs.202407870. Epub 2024 Oct 9.
Artificial neurons and synapses are crucial for efficiently implementing spiking neural networks (SNNs) in hardware. The distinct functional requirements of artificial neurons and synapses present significant challenges in the implementation of area- and energy-efficient SNNs. This study reports an all-ferroelectric SNN system through co-optimization of material properties and device configurations using wafer-scale atomic layer deposition. For the first time, a double-gate (DG) morphotropic phase boundary-based thin-film transistor (MPBTFT) is utilized for a leaky integrate-and-fire (LIF) neuron. The DG MPBTFT-based LIF neuron eliminates the need for capacitors and reset circuits, thereby enhancing area and energy efficiency. The DG configuration demonstrates various neuronal functions with high reliability. Co-optimizing materials and devices significantly enhance the performance and functional versatility of artificial neurons and synapses. Meticulous material engineering facilitates the seamless co-integration of DG MPBTFT-based neurons, ferroelectric thin-film transistor (TFT)-based synapses, and normal TFTs on a single wafer. All-ferroelectric SNN systems achieved a high classification accuracy of 94.9%, thereby highlighting the potential of DG MPBTFT-based LIF neurons for advanced neuromorphic computing.
人工神经元和突触对于在硬件中高效实现脉冲神经网络(SNN)至关重要。人工神经元和突触独特的功能要求给实现面积高效和能量高效的SNN带来了重大挑战。本研究报告了一种全铁电SNN系统,该系统通过使用晶圆级原子层沉积对材料特性和器件配置进行协同优化。首次将基于双栅(DG)同型相界的薄膜晶体管(MPBTFT)用于漏电积分发放(LIF)神经元。基于DG MPBTFT的LIF神经元无需电容器和复位电路,从而提高了面积和能量效率。DG配置以高可靠性展示了各种神经元功能。对材料和器件进行协同优化显著提高了人工神经元和突触的性能及功能通用性。精心的材料工程有助于将基于DG MPBTFT的神经元、基于铁电薄膜晶体管(TFT)的突触和普通TFT无缝共集成在单个晶圆上。全铁电SNN系统实现了94.9%的高分类准确率,从而突出了基于DG MPBTFT的LIF神经元在先进神经形态计算方面的潜力。