Xu Tongle, Luo Zhenghui, Ma Ruijie, Chen Zhanxiang, Dela Peña Top Archie, Liu Heng, Wei Qi, Li Mingjie, Zhang Cai'e, Wu Jiaying, Lu Xinhui, Li Gang, Yang Chuluo
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, 999077, China.
Angew Chem Int Ed Engl. 2023 Jul 24;62(30):e202304127. doi: 10.1002/anie.202304127. Epub 2023 Jun 16.
The central core in A-DA D-A-type small-molecule acceptor (SMAs) plays an important role in determining the efficiency of organic solar cells (OSCs), while the principles governing the efficient design of SMAs remain elusive. Herein, we developed a series of SMAs with pyrido[2,3-b]quinoxaline (PyQx) as new electron-deficient unit by combining with the cascade-chlorination strategy, namely Py1, Py2, Py3, Py4 and Py5. The introduction of chlorine atoms reduces the intramolecular charge transfer effects but elevates the LUMO values. Density functional theory (DFT) reveals that Py2 with ortho chlorine substituted PyQx and Py5 with two chlorine atoms yield larger dipole moments and smaller π⋅⋅⋅π stacking distances, as compared with the other three acceptors. Moreover, Py2 shows the strongest light absorption capability induced by extended orbit overlap lengths and more efficient packing structures in the dimers. These features endow the best device performance of Py2 due to the better molecular packing and aggregation behaviors, more suitable domain sizes with better exciton dissociation and charge recombination. This study highlights the significance of incorporating large dipole moments, small π⋅⋅⋅π stacking distances and extended orbit overlap lengths in dimers into the development of high-performance SMAs, providing insight into the design of efficient A-DA D-A-type SMAs for OSCs.
在A-DA D-A型小分子受体(SMA)中,中心核在决定有机太阳能电池(OSC)的效率方面起着重要作用,而SMA高效设计的原理仍不明确。在此,我们通过结合级联氯化策略,开发了一系列以吡啶并[2,3-b]喹喔啉(PyQx)作为新的缺电子单元的SMA,即Py1、Py2、Py3、Py4和Py5。氯原子的引入降低了分子内电荷转移效应,但提高了最低未占分子轨道(LUMO)值。密度泛函理论(DFT)表明,与其他三种受体相比,邻位氯取代的PyQx的Py2和含有两个氯原子的Py5产生更大的偶极矩和更小的π⋅⋅⋅π堆积距离。此外,由于扩展的轨道重叠长度和二聚体中更有效的堆积结构,Py2表现出最强的光吸收能力。由于更好的分子堆积和聚集行为、更合适的畴尺寸以及更好的激子解离和电荷复合,这些特性赋予了Py2最佳的器件性能。这项研究突出了将二聚体中较大的偶极矩、较小的π⋅⋅⋅π堆积距离和扩展的轨道重叠长度纳入高性能SMA开发的重要性,为OSC的高效A-DA D-A型SMA设计提供了见解。