Wang Yuchen, Mulvihill Ellen, Hu Zixuan, Lyu Ningyi, Shivpuje Saurabh, Liu Yudan, Soley Micheline B, Geva Eitan, Batista Victor S, Kais Sabre
Department of Chemistry, Department of Physics, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States.
Department of Chemistry and Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States.
J Chem Theory Comput. 2023 Aug 8;19(15):4851-4862. doi: 10.1021/acs.jctc.3c00316. Epub 2023 May 26.
We present a quantum algorithm based on the generalized quantum master equation (GQME) approach to simulate open quantum system dynamics on noisy intermediate-scale quantum (NISQ) computers. This approach overcomes the limitations of the Lindblad equation, which assumes weak system-bath coupling and Markovity, by providing a rigorous derivation of the equations of motion for any subset of elements of the reduced density matrix. The memory kernel resulting from the effect of the remaining degrees of freedom is used as input to calculate the corresponding non-unitary propagator. We demonstrate how the Sz.-Nagy dilation theorem can be employed to transform the non-unitary propagator into a unitary one in a higher-dimensional Hilbert space, which can then be implemented on quantum circuits of NISQ computers. We validate our quantum algorithm as applied to the spin-boson benchmark model by analyzing the impact of the quantum circuit depth on the accuracy of the results when the subset is limited to the diagonal elements of the reduced density matrix. Our findings demonstrate that our approach yields reliable results on NISQ IBM computers.
我们提出了一种基于广义量子主方程(GQME)方法的量子算法,用于在有噪声的中尺度量子(NISQ)计算机上模拟开放量子系统动力学。这种方法克服了林德布拉德方程的局限性,林德布拉德方程假设系统 - 浴耦合较弱且具有马尔可夫性,通过为约化密度矩阵元素的任何子集提供运动方程的严格推导来实现。由其余自由度的影响产生的记忆核被用作输入来计算相应的非酉传播子。我们展示了如何利用西 - 纳吉扩张定理在更高维希尔伯特空间中将非酉传播子转换为酉传播子,然后可以在NISQ计算机的量子电路上实现。当子集限于约化密度矩阵的对角元素时,我们通过分析量子电路深度对结果准确性的影响,验证了我们应用于自旋 - 玻色子基准模型的量子算法。我们的研究结果表明,我们的方法在NISQ IBM计算机上产生了可靠的结果。