文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

NETosis 现状及新趋势绘图:文献计量研究。

Mapping current status and emerging trends in NETosis: A bibliometric study.

机构信息

Institute of Geriatric, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

Beijing University of Chinese Medicine, Beijing, China.

出版信息

Medicine (Baltimore). 2023 May 26;102(21):e33806. doi: 10.1097/MD.0000000000033806.


DOI:10.1097/MD.0000000000033806
PMID:37233403
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10219726/
Abstract

BACKGROUND: NETosis is a critical innate immune mechanism of neutrophils that contributes to the accelerated progression of autoimmune diseases, thrombosis, cancer, and coronavirus disease 2019 (COVID-19). This study qualitatively and quantitatively analyzed the relevant literature by bibliometric methods in order to provide a more comprehensive and objective view of the knowledge dynamics in the field. METHODS: The literature on NETosis was downloaded from the Web of Science Core Collection, analyzed with VOSviewer, CiteSpace, and Microsoft for co-authorship, co-occurrence, and co-citation analysis. RESULTS: In the field of NETosis, the United States was the most influential countries. Harvard University was the most active institutions. Mariana J. Kaplan and Brinkmann V were, respectively, the most prolific and most co-cited authors. Frontiers in Immunology, Journal of Immunology, Plos One, Blood, Science, Journal of Cell Biology, and Nature Medicine were the most influential journals. The top 15 keywords are associated with immunological and NETosis formation mechanisms. The keywords with the strongest burst detection were mainly related to COVID-19 (coronavirus, ACE2, SARS coronavirus, cytokine storm, pneumonia, neutrophil to lymphocyte ratio), and cancer (circulating tumor cell). CONCLUSION: Research on NETosis is currently booming. The mechanism of NETosis and its role in innate immunity, autoimmune diseases, especially systemic lupus erythematosus and rheumatoid arthritis, and thrombosis are the focus of research in the field of NETosis. A future study will concentrate on the function of NETosis in COVID-19 and recurrent metastasis of cancer.

摘要

背景:中性粒细胞 NETosis 是一种重要的固有免疫机制,有助于加速自身免疫性疾病、血栓形成、癌症和 2019 年冠状病毒病(COVID-19)的进展。本研究通过文献计量学方法对相关文献进行定性和定量分析,以期更全面、客观地了解该领域的知识动态。

方法:从 Web of Science 核心合集下载关于 NETosis 的文献,使用 VOSviewer、CiteSpace 和 Microsoft 进行共被引、共词和共引分析。

结果:在 NETosis 领域,美国是最具影响力的国家。哈佛大学是最活跃的机构。Mariana J. Kaplan 和 Brinkmann V 分别是最有成果和最常被引用的作者。Frontiers in Immunology、Journal of Immunology、Plos One、Blood、Science、Journal of Cell Biology 和 Nature Medicine 是最有影响力的期刊。排名前 15 的关键词与免疫和 NETosis 形成机制有关。具有最强突发检测的关键词主要与 COVID-19(冠状病毒、ACE2、SARS 冠状病毒、细胞因子风暴、肺炎、中性粒细胞与淋巴细胞比值)和癌症(循环肿瘤细胞)有关。

结论:目前对 NETosis 的研究正在蓬勃发展。NETosis 的机制及其在固有免疫、自身免疫性疾病(尤其是系统性红斑狼疮和类风湿关节炎)和血栓形成中的作用是 NETosis 领域的研究重点。未来的研究将集中在 NETosis 在 COVID-19 和癌症复发转移中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4b/10219726/95e7d6af5ea5/medi-102-e33806-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4b/10219726/1b0350a2de8a/medi-102-e33806-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4b/10219726/b23b766eb966/medi-102-e33806-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4b/10219726/9c98474a0dde/medi-102-e33806-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4b/10219726/560f677906a7/medi-102-e33806-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4b/10219726/b9ee88611c71/medi-102-e33806-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4b/10219726/b8c945b87901/medi-102-e33806-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4b/10219726/95e7d6af5ea5/medi-102-e33806-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4b/10219726/1b0350a2de8a/medi-102-e33806-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4b/10219726/b23b766eb966/medi-102-e33806-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4b/10219726/9c98474a0dde/medi-102-e33806-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4b/10219726/560f677906a7/medi-102-e33806-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4b/10219726/b9ee88611c71/medi-102-e33806-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4b/10219726/b8c945b87901/medi-102-e33806-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4b/10219726/95e7d6af5ea5/medi-102-e33806-g007.jpg

相似文献

[1]
Mapping current status and emerging trends in NETosis: A bibliometric study.

Medicine (Baltimore). 2023-5-26

[2]
Neutrophil extracellular traps in autoimmune diseases: Analysis of the knowledge map.

Front Immunol. 2023

[3]
Scars of COVID-19: A bibliometric analysis of post-COVID-19 fibrosis.

Front Public Health. 2022

[4]
Global research hotspots and frontier trends of epigenetic modifications in autoimmune diseases: A bibliometric analysis from 2012 to 2022.

Medicine (Baltimore). 2023-9-29

[5]
Global research trends and focus on the link between rheumatoid arthritis and neutrophil extracellular traps: a bibliometric analysis from 1985 to 2023.

Front Immunol. 2023

[6]
Knowledge Structure and Emerging Trends of Telerehabilitation in Recent 20 Years: A Bibliometric Analysis CiteSpace.

Front Public Health. 2022

[7]
Global research trends and focus on the link between neutrophil extracellular traps and tumor: a bibliometric and visualization analysis from 2006 to 2024.

Front Immunol. 2024

[8]
Knowledge mapping and research trends of IL-33 from 2004 to 2022: a bibliometric analysis.

Front Immunol. 2023

[9]
Knowledge mapping of COVID-19 and autoimmune diseases: a visual and bibliometric analysis.

Clin Exp Med. 2023-11

[10]
Bibliometric and visual analysis of neutrophil extracellular traps from 2004 to 2022.

Front Immunol. 2022

引用本文的文献

[1]
Bibliometric analysis of neutrophil extracellular traps induced by protozoan and helminth parasites (2008-2024).

Front Immunol. 2025-1-24

[2]
Identification and analysis of chemokine-related and NETosis-related genes in acute pancreatitis to develop a predictive model.

Front Genet. 2024-5-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索