Suppr超能文献

微管吸吮技术作为一种单颗粒 X 射线成像和衍射的工具。

Micropipette aspiration as a tool for single-particle X-ray imaging and diffraction.

机构信息

Georg-August-Universität Göttingen, Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.

ESRF - The European Synchrotron, X-ray Nanoprobe Group, 71 Avenue des Martyrs, 38000 Grenoble, France.

出版信息

J Synchrotron Radiat. 2023 Jul 1;30(Pt 4):788-795. doi: 10.1107/S1600577523003685. Epub 2023 May 26.

Abstract

A sample environment and manipulation tool is presented for single-particle X-ray experiments in an aqueous environment. The system is based on a single water droplet, positioned on a substrate that is structured by a hydrophobic and hydrophilic pattern to stabilize the droplet position. The substrate can support several droplets at a time. Evaporation is prevented by covering the droplet by a thin film of mineral oil. In this windowless fluid which minimizes background signal, single particles can be probed and manipulated by micropipettes, which can easily be inserted and steered in the droplet. Holographic X-ray imaging is shown to be well suited to observe and monitor the pipettes, as well as the droplet surface and the particles. Aspiration and force generation are also enabled based on an application of controlled pressure differences. Experimental challenges are addressed and first results are presented, obtained at two different undulator endstations with nano-focused beams. Finally, the sample environment is discussed in view of future coherent imaging and diffraction experiments with synchrotron radiation and single X-ray free-electron laser pulses.

摘要

本文介绍了一种用于水相中单颗粒 X 射线实验的环境和操控工具。该系统基于一个单水滴,位于由疏水和亲水图案构造的基底上,以稳定液滴位置。基底一次可以支撑多个液滴。通过在液滴上覆盖一层薄的矿物油膜来防止蒸发。在这个无窗的流体中,最小化了背景信号,可以通过微吸管探测和操纵单个颗粒,微吸管可以很容易地插入和在液滴中引导。全息 X 射线成像被证明非常适合观察和监测微吸管,以及液滴表面和颗粒。基于控制压差的应用,还可以实现抽吸和力的产生。本文讨论了实验挑战,并给出了在两个不同的波荡器终端站和纳米聚焦光束下获得的初步结果。最后,本文讨论了该样品环境在未来利用同步辐射和单 X 射线自由电子激光脉冲进行相干成像和衍射实验方面的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f96f/10325018/1d6ed060822d/s-30-00788-fig1.jpg

相似文献

1
Micropipette aspiration as a tool for single-particle X-ray imaging and diffraction.
J Synchrotron Radiat. 2023 Jul 1;30(Pt 4):788-795. doi: 10.1107/S1600577523003685. Epub 2023 May 26.
3
X-ray laser-induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene.
Sci Adv. 2016 Sep 9;2(9):e1601186. doi: 10.1126/sciadv.1601186. eCollection 2016 Sep.
4
Digital in-line X-ray holography with zone plates.
Ultramicroscopy. 2011 Jul;111(8):1131-6. doi: 10.1016/j.ultramic.2011.02.002. Epub 2011 Feb 12.
5
Megahertz-rate ultrafast X-ray scattering and holographic imaging at the European XFEL.
J Synchrotron Radiat. 2022 Nov 1;29(Pt 6):1454-1464. doi: 10.1107/S1600577522008414. Epub 2022 Sep 29.
6
The optical stretcher as a tool for single-particle X-ray imaging and diffraction.
J Synchrotron Radiat. 2018 Jul 1;25(Pt 4):1196-1205. doi: 10.1107/S1600577518006574. Epub 2018 Jun 14.
7
X-ray in-line holography and holotomography at the NanoMAX beamline.
J Synchrotron Radiat. 2022 Jan 1;29(Pt 1):224-229. doi: 10.1107/S1600577521012200.
9
Femtosecond time-delay X-ray holography.
Nature. 2007 Aug 9;448(7154):676-9. doi: 10.1038/nature06049.

本文引用的文献

1
Operando Nanoscale Imaging of Electrochemically Induced Strain in a Locally Polarized Pt Grain.
Nano Lett. 2023 Jan 11;23(1):1-7. doi: 10.1021/acs.nanolett.2c01015. Epub 2022 Dec 21.
3
A phase-retrieval toolbox for X-ray holography and tomography.
J Synchrotron Radiat. 2020 May 1;27(Pt 3):852-859. doi: 10.1107/S1600577520002398. Epub 2020 Apr 14.
5
The optical stretcher as a tool for single-particle X-ray imaging and diffraction.
J Synchrotron Radiat. 2018 Jul 1;25(Pt 4):1196-1205. doi: 10.1107/S1600577518006574. Epub 2018 Jun 14.
6
Vesicle Adhesion and Fusion Studied by Small-Angle X-Ray Scattering.
Biophys J. 2018 Apr 24;114(8):1908-1920. doi: 10.1016/j.bpj.2018.02.040.
7
Pulling Membrane Nanotubes from Giant Unilamellar Vesicles.
J Vis Exp. 2017 Dec 7(130):56086. doi: 10.3791/56086.
8
Cyclic olefin copolymer as an X-ray compatible material for microfluidic devices.
Lab Chip. 2017 Dec 19;18(1):171-178. doi: 10.1039/c7lc00824d.
9
Imaging of Biological Materials and Cells by X-ray Scattering and Diffraction.
ACS Nano. 2017 Sep 26;11(9):8542-8559. doi: 10.1021/acsnano.7b03447. Epub 2017 Aug 15.
10
Rapid Acquisition of X-Ray Scattering Data from Droplet-Encapsulated Protein Systems.
Chemphyschem. 2017 May 19;18(10):1220-1223. doi: 10.1002/cphc.201700221. Epub 2017 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验