School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400, PR China.
School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400, PR China; Department of Chemical and Biomolecular Engineering, National University of Singpore, 4 Engineering Drive 4, 117585, Singapore.
J Colloid Interface Sci. 2023 Oct;647:12-22. doi: 10.1016/j.jcis.2023.04.177. Epub 2023 May 6.
Energy storage devices require separators with sufficient lithium-ion transfer and restrained lithium dendrite growth. Herein, PMIA separators tuned using MIL-101(Cr) (PMIA/MIL-101) were designed and fabricated by a one-step casting process. At 150 °C, the Cr in the MIL-101(Cr) framework sheds two water molecules to form an active metal site that complexes with PF in the electrolyte on the solid/liquid interface, leading to improved Li transport. The Li transference number of the PMIA/MIL-101 composite separator was found to be 0.65, which is about 3 times higher than that of the pure PMIA separator (0.23). Additionally, MIL-101(Cr) can modulate the pore size and porosity of the PMIA separator, while its porous structure also functions as additional storage space for the electrolyte, enhancing the electrochemical performance of the PMIA separator. After 50 charge/discharge cycles, batteries assembled using the PMIA/MIL-101 composite separator and the PMIA separator presented a discharge specific capacity of 120.4 and 108.6 mAh/g, respectively. The battery assembled using PMIA/MIL-101 composite separator significantly outperformed both the batteries assembled from pure PMIA and commercial PP separators in terms of cycling performance at 2 C, displaying a discharge specific capacity of 1.5 times that of the battery assembled from PP separators. The chemical complexation of Cr and PF plays a critical role to improve the electrochemical performance of the PMIA/MIL-101 composite separator. The tunability and enhanced properties of the PMIA/MIL-101 composite separator make it a promising candidate for use in energy storage devices.
储能装置需要具有足够锂离子传输能力和抑制锂枝晶生长的隔膜。本文通过一步浇铸法设计并制备了采用 MIL-101(Cr)(PMIA/MIL-101)调谐的 PMIA 隔膜。在 150°C 时,MIL-101(Cr) 骨架中的 Cr 脱去两个水分子形成活性金属位,在固/液界面与电解质中的 PF 络合,从而改善 Li 传输。PMIA/MIL-101 复合隔膜的 Li 迁移数为 0.65,约为纯 PMIA 隔膜(0.23)的 3 倍。此外,MIL-101(Cr) 可以调节 PMIA 隔膜的孔径和孔隙率,同时其多孔结构也作为电解质的额外储存空间,增强 PMIA 隔膜的电化学性能。经过 50 次充放电循环后,使用 PMIA/MIL-101 复合隔膜和 PMIA 隔膜组装的电池的放电比容量分别为 120.4 和 108.6 mAh/g。与使用纯 PMIA 和商业 PP 隔膜组装的电池相比,使用 PMIA/MIL-101 复合隔膜组装的电池在 2 C 下的循环性能显著提高,其放电比容量是使用 PP 隔膜组装的电池的 1.5 倍。Cr 和 PF 的化学络合对于改善 PMIA/MIL-101 复合隔膜的电化学性能起着至关重要的作用。PMIA/MIL-101 复合隔膜的可调性和增强性能使其成为储能装置的有前途的候选材料。