Sun Yingxue, Chen Zan, Li Claudia, Duan Cuijia, Guo Hongfei, Huang Xinyao, Zhang Tongtong, Lim Kang Hui, Li Yinhui, Kawi Sibudjing
School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400, PR China.
Key Laboratory of Membrane and Membrane Process, China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute, Tianjin 300131, PR China.
J Colloid Interface Sci. 2024 Dec;675:117-129. doi: 10.1016/j.jcis.2024.06.244. Epub 2024 Jul 1.
Functional modification of inorganic particles is an effective approach to tackle the issue of Li transport and the lithium dendrites formation in lithium-ion batteries (LIBs). In this study, PMIA/BiOCl composite separators are prepared by nonsolvent induce phase separation (NIPS) method using P-type semiconductor bismuth oxychloride (BiOCl) functionalized poly (m-phenylene isophthalamide) (PMIA) separators. Compared with the polypropylene (PP) separator, PMIA has superior thermal stability and the addition of BiOCl further enhances its flame retardancy. And the prepared PMIA/BiOCl separator presents improved porosity (66.47 %), enhanced electrolyte uptake rate (863 %) and higher ionic conductivity (0.49 mS∙cm). Besides, the incorporation of BiOCl can anchor PF to the three-dimensional network skeleton of the PMIA/BiOCl separators, enabling the desolvation of Li and selectively facilitating Li transport (the Li transfer number is 0.79). Moreover, the uniform porous structure of the PMIA/BiOCl separators and the efficient transport of Li uniformly deposite Li, and minimize the growth of lithium dendrites. Batteries assembled with PMIA/BiOCl separators have a discharge specific capacity of 124.4 mAh∙g and capacity retention of 96.7 % after 200 cycles at 0.2C. Therefore, this work provides an effective route in the design strategy of separators for LIBs.
无机颗粒的功能改性是解决锂离子电池(LIBs)中锂传输问题和锂枝晶形成问题的有效方法。在本研究中,采用非溶剂诱导相分离(NIPS)法,以P型半导体氯氧化铋(BiOCl)功能化的聚间苯二甲酰间苯二胺(PMIA)隔膜制备了PMIA/BiOCl复合隔膜。与聚丙烯(PP)隔膜相比,PMIA具有优异的热稳定性,BiOCl的加入进一步提高了其阻燃性。制备的PMIA/BiOCl隔膜具有更高的孔隙率(66.47%)、更高的电解液吸收率(863%)和更高的离子电导率(0.49 mS∙cm)。此外,BiOCl的掺入可将PF锚定在PMIA/BiOCl隔膜的三维网络骨架上,实现Li的去溶剂化并选择性地促进Li传输(Li迁移数为0.79)。而且,PMIA/BiOCl隔膜均匀的多孔结构和Li的高效传输使Li均匀沉积,最大限度地减少了锂枝晶的生长。采用PMIA/BiOCl隔膜组装的电池在0.2C下200次循环后的放电比容量为124.4 mAh∙g,容量保持率为96.7%。因此,这项工作为LIBs隔膜的设计策略提供了一条有效途径。