Suppr超能文献

U1 snRNP 对潜在 5' 剪接位点的多步识别。

Multi-step recognition of potential 5' splice sites by the U1 snRNP.

机构信息

Department of Biochemistry, University of Wisconsin-Madison, Madison, United States.

Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, United States.

出版信息

Elife. 2022 Aug 12;11:e70534. doi: 10.7554/eLife.70534.

Abstract

In eukaryotes, splice sites define the introns of pre-mRNAs and must be recognized and excised with nucleotide precision by the spliceosome to make the correct mRNA product. In one of the earliest steps of spliceosome assembly, the U1 small nuclear ribonucleoprotein (snRNP) recognizes the 5' splice site (5' SS) through a combination of base pairing, protein-RNA contacts, and interactions with other splicing factors. Previous studies investigating the mechanisms of 5' SS recognition have largely been done in vivo or in cellular extracts where the U1/5' SS interaction is difficult to deconvolute from the effects of -acting factors or RNA structure. In this work we used colocalization single-molecule spectroscopy (CoSMoS) to elucidate the pathway of 5' SS selection by purified yeast U1 snRNP. We determined that U1 reversibly selects 5' SS in a sequence-dependent, two-step mechanism. A kinetic selection scheme enforces pairing at particular positions rather than overall duplex stability to achieve long-lived U1 binding. Our results provide a kinetic basis for how U1 may rapidly surveil nascent transcripts for 5' SS and preferentially accumulate at these sequences rather than on close cognates.

摘要

在真核生物中,剪接位点定义了前体 mRNA 的内含子,必须由剪接体准确识别和切除,才能产生正确的 mRNA 产物。在剪接体组装的最早步骤之一中,U1 小核核糖核蛋白(snRNP)通过碱基配对、蛋白-RNA 接触以及与其他剪接因子的相互作用来识别 5' 剪接位点(5' SS)。以前研究 5' SS 识别机制的研究主要是在体内或细胞提取物中进行的,在这些情况下,U1/5' SS 相互作用很难与 - 作用因子或 RNA 结构的影响分开。在这项工作中,我们使用共定位单分子光谱学(CoSMoS)来阐明纯化酵母 U1 snRNP 选择 5' SS 的途径。我们确定 U1 以序列依赖性的两步机制可逆地选择 5' SS。一种动力学选择方案通过在特定位置强制配对而不是整体双链体稳定性来实现长寿命的 U1 结合。我们的结果为 U1 如何快速监测新生转录本中的 5' SS 并优先积累在这些序列上而不是在紧密同源物上提供了动力学基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/510e/9436412/eab8d90a67f4/elife-70534-fig1.jpg

相似文献

1
Multi-step recognition of potential 5' splice sites by the U1 snRNP.
Elife. 2022 Aug 12;11:e70534. doi: 10.7554/eLife.70534.
2
Dynamics and consequences of spliceosome E complex formation.
Elife. 2017 Aug 22;6:e27592. doi: 10.7554/eLife.27592.
3
Branch site recognition by the spliceosome.
RNA. 2024 Oct 16;30(11):1397-1407. doi: 10.1261/rna.080198.124.
4
The U1 snRNP protein U1C recognizes the 5' splice site in the absence of base pairing.
Nature. 2002 Sep 5;419(6902):86-90. doi: 10.1038/nature00947.
5
Alternative spliceosome assembly pathways revealed by single-molecule fluorescence microscopy.
Cell Rep. 2013 Oct 17;5(1):151-65. doi: 10.1016/j.celrep.2013.08.026. Epub 2013 Sep 26.
8
Dynamics of the U1 small nuclear ribonucleoprotein during yeast spliceosome assembly.
J Biol Chem. 1997 Jul 11;272(28):17333-41. doi: 10.1074/jbc.272.28.17333.
9
Prespliceosome structure provides insights into spliceosome assembly and regulation.
Nature. 2018 Jul;559(7714):419-422. doi: 10.1038/s41586-018-0323-8. Epub 2018 Jul 11.
10
Functional analysis of the zinc finger modules of the splicing factor Luc7.
RNA. 2024 Jul 16;30(8):1058-1069. doi: 10.1261/rna.079956.124.

引用本文的文献

1
Nascent RNA Folding and RNP Assembly Revealed by Single-molecule Microscopy.
J Mol Biol. 2025 Aug 7:169365. doi: 10.1016/j.jmb.2025.169365.
2
Unraveling gene expression: a beginner's guide from chromatin modifications to mRNA export in .
Nucleus. 2025 Dec;16(1):2516909. doi: 10.1080/19491034.2025.2516909. Epub 2025 Jun 13.
3
Mechanisms and regulation of spliceosome-mediated pre-mRNA splicing in Saccharomyces cerevisiae.
Wiley Interdiscip Rev RNA. 2024 Jul-Aug;15(4):e1866. doi: 10.1002/wrna.1866.
4
Functional analysis of the zinc finger modules of the splicing factor Luc7.
RNA. 2024 Jul 16;30(8):1058-1069. doi: 10.1261/rna.079956.124.
5
A Sequential Binding Mechanism for 5' Splice Site Recognition and Modulation for the Human U1 snRNP.
bioRxiv. 2024 Apr 18:2024.04.18.590139. doi: 10.1101/2024.04.18.590139.
6
Splicing analysis of STAT3 tandem donor suggests non-canonical binding registers for U1 and U6 snRNAs.
Nucleic Acids Res. 2024 Jun 10;52(10):5959-5974. doi: 10.1093/nar/gkae147.
7
Functional Analysis of the Zinc Finger Modules of the Splicing Factor Luc7.
bioRxiv. 2024 Feb 4:2024.02.04.578419. doi: 10.1101/2024.02.04.578419.
8
Pre-mRNA splicing and its cotranscriptional connections.
Trends Genet. 2023 Sep;39(9):672-685. doi: 10.1016/j.tig.2023.04.008. Epub 2023 May 24.

本文引用的文献

1
cAMP binding to closed pacemaker ion channels is non-cooperative.
Nature. 2021 Jul;595(7868):606-610. doi: 10.1038/s41586-021-03686-x. Epub 2021 Jun 30.
2
Stepwise sRNA targeting of structured bacterial mRNAs leads to abortive annealing.
Mol Cell. 2021 May 6;81(9):1988-1999.e4. doi: 10.1016/j.molcel.2021.02.019. Epub 2021 Mar 10.
3
Structure of a transcribing RNA polymerase II-U1 snRNP complex.
Science. 2021 Jan 15;371(6526):305-309. doi: 10.1126/science.abf1870.
4
How to measure and evaluate binding affinities.
Elife. 2020 Aug 6;9:e57264. doi: 10.7554/eLife.57264.
5
Allosteric regulation of U1 snRNP by splicing regulatory proteins controls spliceosomal assembly.
RNA. 2020 Oct;26(10):1389-1399. doi: 10.1261/rna.075135.120. Epub 2020 Jun 10.
6
7
Transcription Increases the Cooperativity of Ribonucleoprotein Assembly.
Cell. 2019 Nov 27;179(6):1370-1381.e12. doi: 10.1016/j.cell.2019.11.007. Epub 2019 Nov 21.
8
9
A unified mechanism for intron and exon definition and back-splicing.
Nature. 2019 Sep;573(7774):375-380. doi: 10.1038/s41586-019-1523-6. Epub 2019 Sep 4.
10
Structural Basis of Nuclear pre-mRNA Splicing: Lessons from Yeast.
Cold Spring Harb Perspect Biol. 2019 May 1;11(5):a032391. doi: 10.1101/cshperspect.a032391.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验