Martín Miguel Ángel, Vara Celia, García-Gutiérrez Carlos
Department of Applied Mathematics, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
Department of English, McGill University, Montreal, QC H3A 0G4, Canada.
Entropy (Basel). 2023 Apr 25;25(5):711. doi: 10.3390/e25050711.
Implicit Motives are non-conscious needs that drive human behavior towards the achievement of incentives that are affectively incited. Repeated affective experiences providing satisfying rewards have been held responsible for the building of Implicit Motives. Responses to rewarding experiences have a biological basis via close connections with neurophysiological systems controlling neurohormone release. We propose an iteration random function system acting in a metric space to model experience-reward interactions. This model is based on key facts of Implicit Motive theory reported in a broad number of studies. The model shows how (random) responses produced by intermittent random experiences create a well-defined probability distribution on an attractor, thus providing an insight into the underlying mechanism leading to the emergence of Implicit Motives as psychological structures. Implicit Motives' robustness and resilience properties appear theoretically explained by the model. The model also provides uncertainty entropy-like parameters to characterize Implicit Motives which hopefully might be useful, beyond the mere theoretical frame, when used in combination with neurophysiological methods.
内隐动机是无意识的需求,它驱动人类行为朝着情感激发的激励目标前进。反复的情感体验提供令人满意的奖励,被认为是内隐动机形成的原因。对奖励体验的反应通过与控制神经激素释放的神经生理系统的紧密联系而具有生物学基础。我们提出一个在度量空间中起作用的迭代随机函数系统来模拟经验-奖励相互作用。该模型基于大量研究所报道的内隐动机理论的关键事实。该模型展示了间歇性随机体验产生的(随机)反应如何在吸引子上创建一个定义明确的概率分布,从而深入了解导致内隐动机作为心理结构出现的潜在机制。该模型从理论上解释了内隐动机的稳健性和复原力特性。该模型还提供了类似不确定性熵的参数来表征内隐动机,当与神经生理方法结合使用时,有望在纯粹的理论框架之外发挥作用。