Suppr超能文献

基于注意力卷积长短期记忆网络的航班延误回归预测模型

Flight Delay Regression Prediction Model Based on Att-Conv-LSTM.

作者信息

Qu Jingyi, Xiao Min, Yang Liu, Xie Wenkai

机构信息

Tianjin Key Laboratory of Advanced Signal Processing, Civil Aviation University of China, Tianjin 300300, China.

出版信息

Entropy (Basel). 2023 May 8;25(5):770. doi: 10.3390/e25050770.

Abstract

Accurate prediction results can provide an excellent reference value for the prevention of large-scale flight delays. Most of the currently available regression prediction algorithms use a single time series network to extract features, with less consideration of the spatial dimensional information contained in the data. Aiming at the above problem, a flight delay prediction method based on Att-Conv-LSTM is proposed. First, in order to fully extract both temporal and spatial information contained in the dataset, the long short-term memory network is used for getting time characteristics, and a convolutional neural network is adopted for obtaining spatial features. Then, the attention mechanism module is added to improve the iteration efficiency of the network. Experimental results show that the prediction error of the Conv-LSTM model is reduced by 11.41 percent compared with the single LSTM, and the prediction error of the Att-Conv-LSTM model is reduced by 10.83 percent compared with the Conv-LSTM. It is proven that considering spatio-temporal characteristics can obtain more accurate prediction results in the flight delay problem, and the attention mechanism module can also effectively improve the model performance.

摘要

准确的预测结果可为大规模航班延误的预防提供极佳的参考价值。当前大多数可用的回归预测算法使用单一时间序列网络来提取特征,较少考虑数据中包含的空间维度信息。针对上述问题,提出了一种基于注意力卷积长短期记忆网络(Att-Conv-LSTM)的航班延误预测方法。首先,为了充分提取数据集中包含的时间和空间信息,使用长短期记忆网络来获取时间特征,并采用卷积神经网络来获取空间特征。然后,添加注意力机制模块以提高网络的迭代效率。实验结果表明,与单一长短期记忆网络相比,卷积长短期记忆网络(Conv-LSTM)模型的预测误差降低了11.41%,与Conv-LSTM相比,注意力卷积长短期记忆网络(Att-Conv-LSTM)模型的预测误差降低了10.83%。事实证明,考虑时空特征可以在航班延误问题中获得更准确的预测结果,并且注意力机制模块也可以有效提高模型性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7654/10217341/2f11368b8a5c/entropy-25-00770-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验