Suppr超能文献

基于卷积长短期记忆网络的糖尿病检测深度学习方法。

A deep learning approach based on convolutional LSTM for detecting diabetes.

机构信息

Department of Physical and Mathematical Sciences, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh.

Department of Physical and Mathematical Sciences, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh.

出版信息

Comput Biol Chem. 2020 Oct;88:107329. doi: 10.1016/j.compbiolchem.2020.107329. Epub 2020 Jul 10.

Abstract

Diabetes is a chronic disease that occurs when the pancreas does not generate sufficient insulin or the body cannot effectively utilize the produced insulin. If it remains unidentified and untreated, then it could be very deadliest. One can lead a healthy life with proper treatment if the presence of diabetes can be detected at an early stage. When the conventional process of detecting diabetes is tedious, there is a need of an automated system for identifying diabetes from the clinical and physical data. In this study, we developed a novel diabetes classifying model based on Convolutional Long Short-term Memory (Conv-LSTM) that was not applied yet in this regard. We applied another three popular models such as Convolutional Neural Network (CNN), Traditional LSTM (T-LSTM), and CNN-LSTM and compared the performance with our developed model over the Pima Indians Diabetes Database (PIDD). Significant features were extracted from the dataset using Boruta algorithm that returned glucose, BMI, insulin, blood pressure, and age as important features for classifying diabetes patients more accurately. We performed hyperparameter optimization using Grid Search algorithm in order to find the optimal parameters for the applied models. Initial experiment by splitting the dataset into separate training and testing sets, the Conv-LSTM-based model classified the diabetes patients with the highest accuracy of 91.38 %. In later, using cross-validation technique the Conv-LSTM model achieved the highest accuracy of 97.26 % and outperformed the other three models along with the state-of-the-art models.

摘要

糖尿病是一种慢性疾病,当胰腺无法产生足够的胰岛素或身体无法有效利用产生的胰岛素时就会发生这种疾病。如果不加以识别和治疗,那么它可能是非常致命的。如果能在早期发现糖尿病,通过适当的治疗,人们可以过上健康的生活。当常规的糖尿病检测过程繁琐时,就需要一种能够从临床和物理数据中识别糖尿病的自动化系统。在这项研究中,我们开发了一种基于卷积长短期记忆(Conv-LSTM)的新型糖尿病分类模型,这在这方面尚未应用。我们还应用了另外三个流行的模型,如卷积神经网络(CNN)、传统长短期记忆(T-LSTM)和 CNN-LSTM,并在皮马印第安人糖尿病数据库(PIDD)上与我们开发的模型进行了性能比较。使用 Boruta 算法从数据集提取了重要特征,该算法返回了葡萄糖、BMI、胰岛素、血压和年龄作为更准确地分类糖尿病患者的重要特征。我们使用网格搜索算法进行超参数优化,以找到应用模型的最佳参数。通过将数据集分为单独的训练集和测试集进行初始实验,基于 Conv-LSTM 的模型将糖尿病患者分类的准确率最高达到 91.38%。后来,使用交叉验证技术,Conv-LSTM 模型的准确率最高达到 97.26%,优于其他三个模型以及最先进的模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验