Suppr超能文献

IH-TCGAN:用于合成意图识别数据的具有改进豪斯多夫距离的时间序列条件生成对抗网络。

IH-TCGAN: Time-Series Conditional Generative Adversarial Network with Improved Hausdorff Distance for Synthesizing Intention Recognition Data.

作者信息

Wang Siyuan, Wang Gang, Fu Qiang, Song Yafei, Liu Jiayi

机构信息

Air Defense and Antimissile School, Air Force Engineering University, Xi'an 710051, China.

出版信息

Entropy (Basel). 2023 May 11;25(5):781. doi: 10.3390/e25050781.

Abstract

As military technology continues to evolve and the amount of situational information available on the battlefield continues to increase, data-driven deep learning methods are becoming the primary method for air target intention recognition. Deep learning is based on a large amount of high quality data; however, in the field of intention recognition, it often faces key problems such as low data volume and unbalanced datasets due to insufficient real-world scenarios. To address these problems, we propose a new method called time-series conditional generative adversarial network with improved Hausdorff distance (IH-TCGAN). The innovation of the method is mainly reflected in three aspects: (1) Use of a transverter to map real and synthetic data into the same manifold so that they have the same intrinsic dimension; (2) Addition of a restorer and a classifier in the network structure to ensure that the model can generate high-quality multiclass temporal data; (3) An improved Hausdorff distance is proposed that can measure the time order differences between multivariate time-series data and make the generated results more reasonable. We conduct experiments using two time-series datasets, evaluate the results using various performance metrics, and visualize the results using visualization techniques. The experimental results show that IH-TCGAN is able to generate synthetic data similar to the real data and has significant advantages in the generation of time series data.

摘要

随着军事技术不断发展,战场上可用的态势信息量持续增加,数据驱动的深度学习方法正成为空中目标意图识别的主要方法。深度学习基于大量高质量数据;然而,在意图识别领域,由于实际场景不足,它常常面临数据量少和数据集不平衡等关键问题。为解决这些问题,我们提出一种名为改进豪斯多夫距离的时间序列条件生成对抗网络(IH-TCGAN)的新方法。该方法的创新主要体现在三个方面:(1)使用变换器将真实数据和合成数据映射到同一流形,使它们具有相同的内在维度;(2)在网络结构中添加恢复器和分类器,以确保模型能够生成高质量的多类时间序列数据;(3)提出一种改进的豪斯多夫距离,它能够测量多变量时间序列数据之间的时间顺序差异,使生成结果更合理。我们使用两个时间序列数据集进行实验,使用各种性能指标评估结果,并使用可视化技术对结果进行可视化。实验结果表明,IH-TCGAN能够生成与真实数据相似的合成数据,并且在时间序列数据生成方面具有显著优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7028/10217029/36ddda7786ad/entropy-25-00781-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验