Suppr超能文献

TCGAN:用于时间序列分类和聚类的卷积生成对抗网络。

TCGAN: Convolutional Generative Adversarial Network for time series classification and clustering.

机构信息

School of Software, Tsinghua University, Beijing, China.

出版信息

Neural Netw. 2023 Aug;165:868-883. doi: 10.1016/j.neunet.2023.06.033. Epub 2023 Jun 30.

Abstract

Recent works have demonstrated the superiority of supervised Convolutional Neural Networks (CNNs) in learning hierarchical representations from time series data for successful classification. These methods require sufficiently large labeled data for stable learning, however acquiring high-quality labeled time series data can be costly and potentially infeasible. Generative Adversarial Networks (GANs) have achieved great success in enhancing unsupervised and semi-supervised learning. Nonetheless, to our best knowledge, it remains unclear how effectively GANs can serve as a general-purpose solution to learn representations for time series recognition, i.e., classification and clustering. The above considerations inspire us to introduce a Time-series Convolutional GAN (TCGAN). TCGAN learns by playing an adversarial game between two one-dimensional CNNs (i.e., a generator and a discriminator) in the absence of label information. Parts of the trained TCGAN are then reused to construct a representation encoder to empower linear recognition methods. We conducted comprehensive experiments on synthetic and real-world datasets. The results demonstrate that TCGAN is faster and more accurate than existing time-series GANs. The learned representations enable simple classification and clustering methods to achieve superior and stable performance. Furthermore, TCGAN retains high efficacy in scenarios with few-labeled and imbalanced-labeled data. Our work provides a promising path to effectively utilize abundant unlabeled time series data.

摘要

最近的研究工作表明,监督卷积神经网络(CNN)在从时间序列数据中学习分层表示以实现成功分类方面具有优越性。这些方法需要足够大的标记数据才能进行稳定的学习,但是获取高质量的标记时间序列数据可能成本高昂,并且可能不可行。生成对抗网络(GAN)在增强无监督和半监督学习方面取得了巨大成功。尽管如此,据我们所知,GAN 作为一种通用解决方案,用于学习时间序列识别(即分类和聚类)的表示形式的效果如何仍不清楚。上述考虑促使我们引入了时间序列卷积 GAN(TCGAN)。TCGAN 在没有标签信息的情况下,通过在两个一维 CNN(即生成器和判别器)之间进行对抗性游戏来进行学习。然后,我们会重复使用训练好的 TCGAN 的一部分来构建表示编码器,为线性识别方法提供支持。我们在合成和真实数据集上进行了全面的实验。结果表明,TCGAN 比现有的时间序列 GAN 更快、更准确。学习到的表示形式使简单的分类和聚类方法能够实现卓越且稳定的性能。此外,TCGAN 在具有少量标记和不平衡标记数据的场景中仍保持高效。我们的工作为有效利用丰富的未标记时间序列数据提供了一条有前景的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验