Suppr超能文献

基于实时数据信息熵的自组织区间二型模糊神经网络补偿控制及其在n自由度机械手中的应用

Self-Organizing Interval Type-2 Fuzzy Neural Network Compensation Control Based on Real-Time Data Information Entropy and Its Application in n-DOF Manipulator.

作者信息

Sun Youbo, Zhao Tao, Liu Nian

机构信息

College of Electrical Engineering, Sichuan University, Chengdu 610065, China.

出版信息

Entropy (Basel). 2023 May 12;25(5):789. doi: 10.3390/e25050789.

Abstract

In order to solve the high-precision motion control problem of the n-degree-of-freedom (n-DOF) manipulator driven by large amount of real-time data, a motion control algorithm based on self-organizing interval type-2 fuzzy neural network error compensation (SOT2-FNNEC) is proposed. The proposed control framework can effectively suppress various types of interference such as base jitter, signal interference, time delay, etc., during the movement of the manipulator. The fuzzy neural network structure and self-organization method are used to realize the online self-organization of fuzzy rules based on control data. The stability of the closed-loop control systems are proved by Lyapunov stability theory. Simulations show that the algorithm is superior to a self-organizing fuzzy error compensation network and conventional sliding mode variable structure control methods in control performance.

摘要

为解决由大量实时数据驱动的n自由度(n-DOF)机械手的高精度运动控制问题,提出了一种基于自组织区间二型模糊神经网络误差补偿(SOT2-FNNEC)的运动控制算法。所提出的控制框架能够有效抑制机械手运动过程中的各种干扰,如基座抖动、信号干扰、时间延迟等。利用模糊神经网络结构和自组织方法,基于控制数据实现模糊规则的在线自组织。通过李雅普诺夫稳定性理论证明了闭环控制系统的稳定性。仿真结果表明,该算法在控制性能上优于自组织模糊误差补偿网络和传统滑模变结构控制方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ce/10217063/f8834708d5a1/entropy-25-00789-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验