Inaba H, Ohwada T, Sato J, Mizuguchi T, Hirasawa H
Jpn J Physiol. 1986;36(1):163-75. doi: 10.2170/jjphysiol.36.163.
Effects of hemoglobin concentration (Hb), pH, and body temperature (T) on the relationships between delta log PO2/delta T and PO2 were studied by means of a mathematical model using a Newton-Raphson iteration method. The functions between delta log PO2/delta T and PO2 were affected by the above three factors. New equations considering the effects of Hb, pH, and T were proposed by modifying the equation reported by Severinghaus: delta log PO2/delta T = (L +(U-L)/(A(vPO237)B + 1))(10(-2) where U = 3.15-0.45(7.4-pH37) L = 0.68-0.09(7.4-pH37) A = 5.86(exp10(0.074(T)-0.294(7.4-pH37)-11))((Hb)0.913) B = 6.33(exp10(-0.0051(T)))((Hb)-0.113) + 0.24(7.4-pH37) and vPO237 is virtual PO237 which may exist when PO237 is corrected to standard conditions (pH = 7.4, BE = 0) by the following equations: vPO237 = PO237(exp10(fB(7.4-pH37)-0.0013(BE))) fB = (PO237/26.6)0.08-1.52 where fB is the Bohr factor. The above equations provided values of delta log PO2/delta T which fit closely to those obtained by the complex iteration method with maximum differences of less than 1.3 X 10(-3) at T = 27, indicating that maximum % errors for PO2 at T (PO2T) are less than 3.0% at T = 27 and that our equations can be applied over a wide range of Hb, pH37 and T.