Suppr超能文献

一种机器学习方法揭示了 COVID-19 时代青少年日常和非日常电子烟使用者电子烟依赖的不同预测因素。

A Machine Learning Approach Reveals Distinct Predictors of Vaping Dependence for Adolescent Daily and Non-Daily Vapers in the COVID-19 Era.

作者信息

Singh Ishmeet, Valavil Punnapuzha Varna, Mitsakakis Nicholas, Fu Rui, Chaiton Michael

机构信息

Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada.

Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada.

出版信息

Healthcare (Basel). 2023 May 18;11(10):1465. doi: 10.3390/healthcare11101465.

Abstract

Since 2016, there has been a substantial rise in e-cigarette (vaping) dependence among young people. In this prospective cohort study, we aimed to identify the different predictors of vaping dependence over 3 months among adolescents who were baseline daily and non-daily vapers. We recruited ever-vaping Canadian residents aged 16-25 years on social media platforms and asked them to complete a baseline survey in November 2020. A validated vaping dependence score (0-23) summing up their responses to nine questions was calculated at the 3-month follow-up survey. Separate lasso regression models were developed to identify predictors of higher 3-month vaping dependence score among baseline daily and non-daily vapers. Of the 1172 participants, 643 (54.9%) were daily vapers with a mean age of 19.6 ± 2.6 years and 76.4% ( = 895) of them being female. The two models achieved adequate predictive performance. Place of last vape purchase, number of days a pod lasts, and the frequency of nicotine-containing vaping were the most important predictors for dependence among daily vapers, while race, sexual orientation and reporting treatment for heart disease were the most important predictors in non-daily vapers. These findings have implications for vaping control policies that target adolescents at different stages of vape use.

摘要

自2016年以来,年轻人中电子烟(雾化)依赖现象大幅上升。在这项前瞻性队列研究中,我们旨在确定基线时每日和非每日使用电子烟的青少年在3个月内电子烟依赖的不同预测因素。我们在社交媒体平台上招募了年龄在16至25岁之间曾经使用过电子烟的加拿大居民,并要求他们在2020年11月完成一项基线调查。在3个月的随访调查中,计算了一个经过验证的电子烟依赖评分(0至23分),该评分汇总了他们对九个问题的回答。我们建立了单独的套索回归模型,以确定基线时每日和非每日使用电子烟者中3个月电子烟依赖评分较高的预测因素。在1172名参与者中,643人(54.9%)为每日使用电子烟者,平均年龄为19.6±2.6岁,其中76.4%(n = 895)为女性。这两个模型具有足够的预测性能。最后一次购买电子烟的地点、一个烟弹的使用天数以及含尼古丁电子烟的使用频率是每日使用电子烟者中依赖的最重要预测因素,而种族、性取向和报告患有心脏病的治疗情况是非每日使用电子烟者中最重要的预测因素。这些发现对针对电子烟使用不同阶段青少年的电子烟控制政策具有启示意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9928/10217978/2dad7b4c24b6/healthcare-11-01465-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验