Suppr超能文献

多尺度模型研究 CVD 生长在 Cu(111)表面上的石墨烯

Multiscale Model of CVD Growth of Graphene on Cu(111) Surface.

机构信息

Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

出版信息

Int J Mol Sci. 2023 May 10;24(10):8563. doi: 10.3390/ijms24108563.

Abstract

Due to its outstanding properties, graphene has emerged as one of the most promising 2D materials in a large variety of research fields. Among the available fabrication protocols, chemical vapor deposition (CVD) enables the production of high quality single-layered large area graphene. To better understand the kinetics of CVD graphene growth, multiscale modeling approaches are sought after. Although a variety of models have been developed to study the growth mechanism, prior studies are either limited to very small systems, are forced to simplify the model to eliminate the fast process, or they simplify reactions. While it is possible to rationalize these approximations, it is important to note that they have non-trivial consequences on the overall growth of graphene. Therefore, a comprehensive understanding of the kinetics of graphene growth in CVD remains a challenge. Here, we introduce a kinetic Monte Carlo protocol that permits, for the first time, the representation of relevant reactions on the atomic scale, without additional approximations, while still reaching very long time and length scales of the simulation of graphene growth. The quantum-mechanics-based multiscale model, which links kinetic Monte Carlo growth processes with the rates of occurring chemical reactions, calculated from first principles makes it possible to investigate the contributions of the most important species in graphene growth. It permits the proper investigation of the role of carbon and its dimer in the growth process, thus indicating the carbon dimer to be the dominant species. The consideration of hydrogenation and dehydrogenation reactions enables us to correlate the quality of the material grown within the CVD control parameters and to demonstrate an important role of these reactions in the quality of the grown graphene in terms of its surface roughness, hydrogenation sites, and vacancy defects. The model developed is capable of providing additional insights to control the graphene growth mechanism on Cu(111), which may guide further experimental and theoretical developments.

摘要

由于其出色的性能,石墨烯已成为各种研究领域中最有前途的二维材料之一。在现有的制造协议中,化学气相沉积(CVD)能够生产高质量的单层大面积石墨烯。为了更好地理解 CVD 石墨烯生长的动力学,人们寻求多尺度建模方法。尽管已经开发了各种模型来研究生长机制,但先前的研究要么仅限于非常小的系统,要么被迫简化模型以消除快速过程,要么简化反应。虽然可以合理化这些近似,但重要的是要注意,它们对石墨烯的整体生长有重要影响。因此,全面理解 CVD 中石墨烯生长的动力学仍然是一个挑战。在这里,我们引入了一种动力学蒙特卡罗协议,该协议首次允许在原子尺度上表示相关反应,而无需额外的近似,同时仍然可以达到石墨烯生长模拟的非常长的时间和长度尺度。基于量子力学的多尺度模型将动力学蒙特卡罗生长过程与从第一性原理计算得出的化学反应速率联系起来,从而有可能研究在石墨烯生长中最重要的物种的贡献。它允许适当研究碳及其二聚体在生长过程中的作用,从而表明碳二聚体是主要物种。氢化和脱氢反应的考虑使我们能够将在 CVD 控制参数内生长的材料的质量与这些反应在生长石墨烯的质量方面的重要作用相关联,从而表明这些反应在生长石墨烯的表面粗糙度、氢化位和空位缺陷方面起着重要作用。所开发的模型能够提供关于控制 Cu(111)上石墨烯生长机制的附加见解,这可能指导进一步的实验和理论发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验