Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228, Singapore.
Department of Medical Research, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
Int J Mol Sci. 2023 May 15;24(10):8763. doi: 10.3390/ijms24108763.
Retinal pigment epithelial (RPE) cell dysfunction is a key driving force of AMD. RPE cells form a metabolic interface between photoreceptors and choriocapillaris, performing essential functions for retinal homeostasis. Through their multiple functions, RPE cells are constantly exposed to oxidative stress, which leads to the accumulation of damaged proteins, lipids, nucleic acids, and cellular organelles, including mitochondria. As miniature chemical engines of the cell, self-replicating mitochondria are heavily implicated in the aging process through a variety of mechanisms. In the eye, mitochondrial dysfunction is strongly associated with several diseases, including age-related macular degeneration (AMD), which is a leading cause of irreversible vision loss in millions of people globally. Aged mitochondria exhibit decreased rates of oxidative phosphorylation, increased reactive oxygen species (ROS) generation, and increased numbers of mitochondrial DNA mutations. Mitochondrial bioenergetics and autophagy decline during aging because of insufficient free radical scavenger systems, the impairment of DNA repair mechanisms, and reductions in mitochondrial turnover. Recent research has uncovered a much more complex role of mitochondrial function and cytosolic protein translation and proteostasis in AMD pathogenesis. The coupling of autophagy and mitochondrial apoptosis modulates the proteostasis and aging processes. This review aims to summarise and provide a perspective on (i) the current evidence of autophagy, proteostasis, and mitochondrial dysfunction in dry AMD; (ii) current in vitro and in vivo disease models relevant to assessing mitochondrial dysfunction in AMD, and their utility in drug screening; and (iii) ongoing clinical trials targeting mitochondrial dysfunction for AMD therapeutics.
视网膜色素上皮 (RPE) 细胞功能障碍是 AMD 的主要驱动因素。RPE 细胞在感光细胞和脉络膜毛细血管之间形成代谢界面,执行视网膜内稳态的基本功能。通过其多种功能,RPE 细胞不断受到氧化应激的影响,导致受损蛋白质、脂质、核酸和细胞器(包括线粒体)的积累。作为细胞的微型化学引擎,线粒体通过多种机制大量参与衰老过程。在眼睛中,线粒体功能障碍与包括年龄相关性黄斑变性 (AMD) 在内的多种疾病密切相关,AMD 是导致全球数百万人不可逆转视力丧失的主要原因。衰老的线粒体表现出氧化磷酸化率降低、活性氧 (ROS) 生成增加以及线粒体 DNA 突变增加。由于自由基清除系统不足、DNA 修复机制受损以及线粒体周转率降低,衰老过程中线粒体生物能学和自噬下降。最近的研究揭示了线粒体功能和细胞质蛋白翻译和蛋白稳态在 AMD 发病机制中的更为复杂的作用。自噬和线粒体凋亡的偶联调节了蛋白稳态和衰老过程。本综述旨在总结和提供关于 (i) 干性 AMD 中自噬、蛋白稳态和线粒体功能障碍的当前证据;(ii) 目前与评估 AMD 中线粒体功能障碍相关的体外和体内疾病模型及其在药物筛选中的应用;以及 (iii) 针对 AMD 治疗的正在进行的靶向线粒体功能障碍的临床试验。