Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, P.O. Box 1627, FI-70211, Kuopio, Finland.
Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland and Tays Eye Centre, Tampere University Hospital, P.O.Box 2000, 33521 Tampere, Finland.
Prog Retin Eye Res. 2020 Nov;79:100858. doi: 10.1016/j.preteyeres.2020.100858. Epub 2020 Apr 13.
Oxidative stress-induced damage to the retinal pigment epithelium (RPE) is considered to be a key factor in age-related macular degeneration (AMD) pathology. RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, lipids, nucleic acids, and cellular organelles, including mitochondria. The ubiquitin-proteasome and the lysosomal/autophagy pathways are the two major proteolytic systems to remove damaged proteins and organelles. There is increasing evidence that proteostasis is disturbed in RPE as evidenced by lysosomal lipofuscin and extracellular drusen accumulation in AMD. Nuclear factor-erythroid 2-related factor-2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) are master transcription factors in the regulation of antioxidant enzymes, clearance systems, and biogenesis of mitochondria. The precise cause of RPE degeneration and the onset and progression of AMD are not fully understood. However, mitochondria dysfunction, increased reactive oxygen species (ROS) production, and mitochondrial DNA (mtDNA) damage are observed together with increased protein aggregation and inflammation in AMD. In contrast, functional mitochondria prevent RPE cells damage and suppress inflammation. Here, we will discuss the role of mitochondria in RPE degeneration and AMD pathology focused on mtDNA damage and repair, autophagy/mitophagy signaling, and regulation of inflammation. Mitochondria are putative therapeutic targets to prevent or treat AMD.
氧化应激对视网膜色素上皮(RPE)的损伤被认为是年龄相关性黄斑变性(AMD)发病机制中的一个关键因素。RPE 细胞不断受到氧化应激的影响,这可能导致受损的细胞蛋白、脂质、核酸和细胞细胞器(包括线粒体)的积累。泛素-蛋白酶体和溶酶体/自噬途径是两种主要的蛋白水解系统,用于清除受损的蛋白质和细胞器。越来越多的证据表明,RPE 中的蛋白质稳态受到干扰,这表现在 AMD 中溶酶体脂褐素和细胞外 drusen 的积累。核因子红细胞 2 相关因子 2(NFE2L2)和过氧化物酶体增殖物激活受体γ共激活因子 1α(PGC-1α)是调节抗氧化酶、清除系统和线粒体生物发生的主要转录因子。RPE 变性和 AMD 的发生和进展的确切原因尚未完全阐明。然而,在 AMD 中观察到线粒体功能障碍、活性氧(ROS)产生增加、线粒体 DNA(mtDNA)损伤以及蛋白质聚集和炎症增加。相比之下,功能正常的线粒体可防止 RPE 细胞损伤并抑制炎症。在这里,我们将讨论线粒体在 RPE 变性和 AMD 发病机制中的作用,重点讨论 mtDNA 损伤和修复、自噬/线粒体自噬信号以及炎症的调节。线粒体是预防或治疗 AMD 的潜在治疗靶点。