Suppr超能文献

声表面波声光流控芯片中的声光现象分析及其在光重聚焦中的应用

Analysis of Acousto-Optic Phenomenon in SAW Acoustofluidic Chip and Its Application in Light Refocusing.

作者信息

Qin Xianming, Chen Xuan, Yang Qiqi, Yang Lei, Liu Yan, Zhang Chuanyu, Wei Xueyong, Wang Weidong

机构信息

School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China.

CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an 710071, China.

出版信息

Micromachines (Basel). 2023 Apr 26;14(5):943. doi: 10.3390/mi14050943.

Abstract

This paper describes and analyzes a common acousto-optic phenomenon in surface acoustic wave (SAW) microfluidic chips and accomplishes some imaging experiments based on these analyses. This phenomenon in acoustofluidic chips includes the appearance of bright and dark stripes and image distortion. This article analyzes the three-dimensional acoustic pressure field and refractive index field distribution induced by focused acoustic fields and completes an analysis of the light path in an uneven refractive index medium. Based on the analysis of microfluidic devices, a SAW device based on a solid medium is further proposed. This MEMS SAW device can refocus the light beam and adjust the sharpness of the micrograph. The focal length can be controlled by changing the voltage. Moreover, the chip is also proven to be capable of forming a refractive index field in scattering media, such as tissue phantom and pig subcutaneous fat layer. This chip has the potential to be used as a planar microscale optical component that is easy to integrate and further optimize and provides a new concept about tunable imaging devices that can be attached directly to the skin or tissue.

摘要

本文描述并分析了表面声波(SAW)微流控芯片中一种常见的声光现象,并基于这些分析完成了一些成像实验。声流控芯片中的这种现象包括明暗条纹的出现和图像失真。本文分析了聚焦声场引起的三维声压场和折射率场分布,并完成了对不均匀折射率介质中光路的分析。基于对微流控器件的分析,进一步提出了一种基于固体介质的SAW器件。这种MEMS SAW器件可以使光束重新聚焦并调整显微照片的清晰度。焦距可以通过改变电压来控制。此外,该芯片还被证明能够在散射介质中形成折射率场,如组织仿体和猪皮下脂肪层。该芯片有潜力用作易于集成和进一步优化的平面微尺度光学元件,并为可直接附着于皮肤或组织的可调谐成像设备提供了一个新概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a41d/10223201/304f9fee4bef/micromachines-14-00943-g001.jpg

相似文献

1
Analysis of Acousto-Optic Phenomenon in SAW Acoustofluidic Chip and Its Application in Light Refocusing.
Micromachines (Basel). 2023 Apr 26;14(5):943. doi: 10.3390/mi14050943.
2
Rapid acoustofluidic mixing by ultrasonic surface acoustic wave-induced acoustic streaming flow.
Ultrason Sonochem. 2023 Oct;99:106575. doi: 10.1016/j.ultsonch.2023.106575. Epub 2023 Sep 4.
4
A novel progressive wave gyroscope based on acousto-optic effects.
Microsyst Nanoeng. 2022 Sep 2;8:95. doi: 10.1038/s41378-022-00429-4. eCollection 2022.
5
Capillary-based, multifunctional manipulation of particles and fluids focused surface acoustic waves.
J Phys D Appl Phys. 2024 Aug;57(30). doi: 10.1088/1361-6463/ad415a. Epub 2024 May 7.
6
Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes.
Opt Express. 2018 Sep 17;26(19):25060-25075. doi: 10.1364/OE.26.025060.
7
Numerical study of the coupling layer between transducer and chip in acoustofluidic devices.
J Acoust Soc Am. 2021 May;149(5):3096. doi: 10.1121/10.0004871.
8
FEM Analysis of Various Multilayer Structures for CMOS Compatible Wearable Acousto-Optic Devices.
Sensors (Basel). 2021 Nov 26;21(23):7863. doi: 10.3390/s21237863.
9
Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance.
Ultrason Sonochem. 2023 Feb;93:106305. doi: 10.1016/j.ultsonch.2023.106305. Epub 2023 Jan 18.
10
Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics.
Microfluid Nanofluidics. 2017 Aug;21. doi: 10.1007/s10404-017-1971-y. Epub 2017 Jul 21.

本文引用的文献

2
Intra-droplet particle enrichment in a focused acoustic field.
RSC Adv. 2020 Mar 20;10(20):11565-11572. doi: 10.1039/d0ra01512a. eCollection 2020 Mar 19.
5
Acoustic valves in microfluidic channels for droplet manipulation.
Lab Chip. 2021 Aug 21;21(16):3165-3173. doi: 10.1039/d1lc00261a. Epub 2021 Jun 30.
6
Ultrasonically sculpted virtual relay lens for in situ microimaging.
Light Sci Appl. 2019 Jul 17;8:65. doi: 10.1038/s41377-019-0173-7. eCollection 2019.
7
Effect of Pressure and Temperature on the Refractive Indices of Benzene, Carbon Tetrachloride, and Water.
J Res Natl Bur Stand A Phys Chem. 1963 Mar-Apr;67A(2):163-171. doi: 10.6028/jres.067A.016.
8
Wave number-spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells.
Sci Adv. 2019 May 31;5(5):eaau6062. doi: 10.1126/sciadv.aau6062. eCollection 2019 May.
9
In situ 3D reconfigurable ultrasonically sculpted optical beam paths.
Opt Express. 2019 Mar 4;27(5):7249-7265. doi: 10.1364/OE.27.007249.
10
Ultrasonic sculpting of virtual optical waveguides in tissue.
Nat Commun. 2019 Jan 9;10(1):92. doi: 10.1038/s41467-018-07856-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验