文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用加压气体辅助静电纺丝技术对龙血树 sap 进行乳清蛋白浓缩物和玉米醇溶蛋白的微胶囊化。

Dragon's Blood Sap Microencapsulation within Whey Protein Concentrate and Zein Using Electrospraying Assisted by Pressurized Gas Technology.

机构信息

Research & Development Department, Bioinicia S.L. Calle Algepser 65, 46980 Paterna, Spain.

Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain.

出版信息

Molecules. 2023 May 17;28(10):4137. doi: 10.3390/molecules28104137.


DOI:10.3390/molecules28104137
PMID:37241878
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10223416/
Abstract

Dragon's blood sap (DBS) obtained from the bark of Croton lechleri (Müll, Arg.) is a complex herbal remedy of pharmacological interest due to its high content in polyphenols, specifically proanthocyanidins. In this paper, electrospraying assisted by pressurized gas (EAPG) was first compared with freeze-drying to dry natural DBS. Secondly, EAPG was used for the first time to entrap natural DBS at room temperature into two different encapsulation matrices, i.e., whey protein concentrate (WPC) and zein (ZN), using different ratios of encapsulant material: bioactive compound, for instance 2:1 / and 1:1 /. The obtained particles were characterized in terms of morphology, total soluble polyphenolic content (TSP), antioxidant activity, and photo-oxidation stability during the 40 days of the experiment. Regarding the drying process, EAPG produced spherical particles with sizes of 11.38 ± 4.34 µm, whereas freeze-drying produced irregular particles with a broad particle size distribution. However, no significant differences were detected between DBS dried by EAPG or freeze-drying in TSP, antioxidant activity, and photo-oxidation stability, confirming that EAPG is a mild drying process suitable to dry sensitive bioactive compounds. Regarding the encapsulation process, the DBS encapsulated within the WPC produced smooth spherical microparticles, with average sizes of 11.28 ± 4.28 µm and 12.77 ± 4.54 µm for ratios 1:1 / and 2:1 /, respectively. The DBS was also encapsulated into ZN producing rough spherical microparticles, with average sizes of 6.37 ± 1.67 µm and 7.58 ± 2.54 µm for ratios 1:1 / and 2:1 /, respectively. The TSP was not affected during the encapsulation process. However, a slight reduction in antioxidant activity measured by DPPH was observed during encapsulation. An accelerated photo-oxidation test under ultraviolet light confirmed that the encapsulated DBS showed an increased oxidative stability in comparison with the non-encapsulated DBS, with the stability being enhanced for the ratio of 2:1 /. Among the encapsulating materials and according to the ATR-FTIR results, ZN showed increased protection against UV light. The obtained results demonstrate the potential of EAPG technology in the drying or encapsulation of sensitive natural bioactive compounds in a continuous process available at an industrial scale, which could be an alternative to freeze-drying.

摘要

龙血树树液(DBS)从 Croton lechleri(Müll,Arg.)树皮中提取,由于其多酚含量高,特别是原花青素,因此是一种具有药理作用的复杂草药制剂。在本文中,首次比较了加压气体辅助静电喷雾(EAPG)与冷冻干燥对天然 DBS 的干燥效果。其次,首次使用 EAPG 在室温下将天然 DBS 包埋到两种不同的包封基质中,即乳清蛋白浓缩物(WPC)和玉米醇溶蛋白(ZN)中,使用不同的包封材料:生物活性化合物的比例,例如 2:1 / 和 1:1 / 。所得颗粒的形态、总可溶性多酚含量(TSP)、抗氧化活性和 40 天实验期间的光氧化稳定性进行了表征。关于干燥过程,EAPG 产生的颗粒粒径为 11.38 ± 4.34 µm,呈球形,而冷冻干燥产生的颗粒粒径分布较宽,呈不规则形状。然而,EAPG 干燥和冷冻干燥的 DBS 在 TSP、抗氧化活性和光氧化稳定性方面没有差异,这表明 EAPG 是一种温和的干燥工艺,适用于干燥敏感的生物活性化合物。关于包封过程,DBS 包封在 WPC 中形成了光滑的球形微球,比例为 1:1 / 和 2:1 / 的平均粒径分别为 11.28 ± 4.28 µm 和 12.77 ± 4.54 µm。DBS 也被包封到 ZN 中形成粗糙的球形微球,比例为 1:1 / 和 2:1 / 的平均粒径分别为 6.37 ± 1.67 µm 和 7.58 ± 2.54 µm。包封过程中 TSP 没有变化。然而,在包封过程中,通过 DPPH 测量观察到抗氧化活性略有下降。在紫外线照射下进行的加速光氧化试验证实,与未包封的 DBS 相比,包封的 DBS 显示出增强的氧化稳定性,对于 2:1 / 的比例稳定性增强。根据 ATR-FTIR 结果,在包封材料中,ZN 对紫外线显示出增加的保护作用。所得结果表明,EAPG 技术在连续工业化规模下对敏感天然生物活性化合物的干燥或包封具有潜力,这可能是冷冻干燥的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cd/10223416/7bdf5bae0781/molecules-28-04137-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cd/10223416/2075f60a2750/molecules-28-04137-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cd/10223416/4497f0780c07/molecules-28-04137-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cd/10223416/76030708b5ff/molecules-28-04137-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cd/10223416/0fee6846b5c5/molecules-28-04137-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cd/10223416/599806dddffe/molecules-28-04137-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cd/10223416/f478da454a65/molecules-28-04137-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cd/10223416/7bdf5bae0781/molecules-28-04137-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cd/10223416/2075f60a2750/molecules-28-04137-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cd/10223416/4497f0780c07/molecules-28-04137-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cd/10223416/76030708b5ff/molecules-28-04137-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cd/10223416/0fee6846b5c5/molecules-28-04137-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cd/10223416/599806dddffe/molecules-28-04137-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cd/10223416/f478da454a65/molecules-28-04137-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39cd/10223416/7bdf5bae0781/molecules-28-04137-g007a.jpg

相似文献

[1]
Dragon's Blood Sap Microencapsulation within Whey Protein Concentrate and Zein Using Electrospraying Assisted by Pressurized Gas Technology.

Molecules. 2023-5-17

[2]
Nanodroplets of Docosahexaenoic Acid-Enriched Algae Oil Encapsulated within Microparticles of Hydrocolloids by Emulsion Electrospraying Assisted by Pressurized Gas.

Nanomaterials (Basel). 2020-2-6

[3]
Room Temperature Nanoencapsulation of Bioactive Eicosapentaenoic Acid Rich Oil within Whey Protein Microparticles.

Nanomaterials (Basel). 2021-2-25

[4]
Dragon's Blood Sap: Storage Stability and Antioxidant Activity.

Molecules. 2018-10-15

[5]
Non-emulsion-based encapsulation of fish oil by coaxial electrospraying assisted by pressurized gas enhances the oxidative stability of a capsule-fortified salad dressing.

Food Chem. 2024-1-15

[6]
Complex coacervation and freeze drying using whey protein concentrate, soy protein isolate and arabic gum to improve the oxidative stability of chia oil.

J Sci Food Agric. 2023-5

[7]
Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications.

Food Chem. 2015-2-1

[8]
Microencapsulation of -carotene using barley residue proteins from beer waste as coating material.

J Microencapsul. 2023-5

[9]
Whey protein concentrate and skimmed milk powder as encapsulation agents for coffee silverskin extracts processed by spray drying.

J Dairy Res. 2024-2

[10]
Effect of Whey Protein Purity on the Characteristics of Algae Oil-Loaded Encapsulates Obtained by Electrospraying Assisted by Pressurized Gas.

Nanomaterials (Basel). 2022-9-7

引用本文的文献

[1]
Comparison of the Stability of a Camu Camu Extract Dried and Encapsulated by Means of High-Throughput Electrospraying Assisted by Pressurized Gas.

Foods. 2024-10-16

本文引用的文献

[1]
Microencapsulation of carotenoid-rich materials: A review.

Food Res Int. 2021-9

[2]
Starch-based materials encapsulating food ingredients: Recent advances in fabrication methods and applications.

Carbohydr Polym. 2021-10-15

[3]
Characterization of Natural and Alkaline-Oxidized Proanthocyanidins in Plant Extracts by Ultrahigh-Resolution UHPLC-MS/MS.

Molecules. 2021-3-26

[4]
Room Temperature Nanoencapsulation of Bioactive Eicosapentaenoic Acid Rich Oil within Whey Protein Microparticles.

Nanomaterials (Basel). 2021-2-25

[5]
Unraveling Particle Formation: From Single Droplet Drying to Spray Drying and Electrospraying.

Pharmaceutics. 2020-7-4

[6]
Nanomaterials to Enhance Food Quality, Safety, and Health Impact.

Nanomaterials (Basel). 2020-5-14

[7]
Nanodroplets of Docosahexaenoic Acid-Enriched Algae Oil Encapsulated within Microparticles of Hydrocolloids by Emulsion Electrospraying Assisted by Pressurized Gas.

Nanomaterials (Basel). 2020-2-6

[8]
Food-grade gliadin microstructures obtained by electrohydrodynamic processing.

Food Res Int. 2019-2

[9]
Dragon's Blood Sap: Storage Stability and Antioxidant Activity.

Molecules. 2018-10-15

[10]
The Chemical Reactivity of Anthocyanins and Its Consequences in Food Science and Nutrition.

Molecules. 2018-8-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索