Repertoire Genesis Inc., Osaka 567-0085, Japan.
Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
Viruses. 2023 May 17;15(5):1186. doi: 10.3390/v15051186.
T-cell recognition of antigen epitopes is a crucial step for the induction of adaptive immune responses, and the identification of such T-cell epitopes is, therefore, important for understanding diverse immune responses and controlling T-cell immunity. A number of bioinformatic tools exist that predict T-cell epitopes; however, many of these methods highly rely on evaluating conventional peptide presentation by major histocompatibility complex (MHC) molecules, but they ignore epitope sequences recognized by T-cell receptor (TCR). Immunogenic determinant idiotopes are present on the variable regions of immunoglobulin molecules expressed on and secreted by B-cells. In idiotope-driven T-cell/B-cell collaboration, B-cells present the idiotopes on MHC molecules for recognition by idiotope-specific T-cells. According to the idiotype network theory formulated by Niels Jerne, such idiotopes found on anti-idiotypic antibodies exhibit molecular mimicry of antigens. Here, by combining these concepts and defining the patterns of TCR-recognized epitope motifs (TREMs), we developed a T-cell epitope prediction method that identifies T-cell epitopes derived from antigen proteins by analyzing B-cell receptor (BCR) sequences. This method allowed us to identify T-cell epitopes that contain the same TREM patterns between BCR and viral antigen sequences in two different infectious diseases caused by dengue virus and SARS-CoV-2 infection. The identified epitopes were among the T-cell epitopes detected in previous studies, and T-cell stimulatory immunogenicity was confirmed. Thus, our data support this method as a powerful tool for the discovery of T-cell epitopes from BCR sequences.
T 细胞识别抗原表位是诱导适应性免疫反应的关键步骤,因此,鉴定这些 T 细胞表位对于理解各种免疫反应和控制 T 细胞免疫至关重要。目前有许多生物信息学工具可用于预测 T 细胞表位;然而,这些方法中的许多都高度依赖于评估主要组织相容性复合体 (MHC) 分子对常规肽的呈递,而忽略了 T 细胞受体 (TCR) 识别的表位序列。免疫原性决定簇的独特型存在于 B 细胞表达和分泌的免疫球蛋白分子的可变区。在独特型驱动的 T 细胞/B 细胞协作中,B 细胞将独特型呈递到 MHC 分子上,供独特型特异性 T 细胞识别。根据 Niels Jerne 提出的独特型网络理论,这些存在于抗独特型抗体上的独特型表现出抗原的分子模拟。在这里,我们结合这些概念并定义 TCR 识别的表位基序 (TREM) 的模式,开发了一种 T 细胞表位预测方法,通过分析 B 细胞受体 (BCR) 序列来鉴定来自抗原蛋白的 T 细胞表位。该方法使我们能够识别出在两种不同的传染病(由登革热病毒和 SARS-CoV-2 感染引起)中,BCR 和病毒抗原序列之间存在相同 TREMs 模式的 T 细胞表位。鉴定出的表位均为先前研究中检测到的 T 细胞表位之一,且 T 细胞刺激免疫原性得到了证实。因此,我们的数据支持该方法作为从 BCR 序列中发现 T 细胞表位的有力工具。