Suppr超能文献

通过ZnSe厚壳过度生长提高用氨基胂合成的InAs纳米晶体的光致发光效率。

Boosting the Photoluminescence Efficiency of InAs Nanocrystals Synthesized with Aminoarsine via a ZnSe Thick-Shell Overgrowth.

作者信息

Zhu Dongxu, Bahmani Jalali Houman, Saleh Gabriele, Di Stasio Francesco, Prato Mirko, Polykarpou Nefeli, Othonos Andreas, Christodoulou Sotirios, Ivanov Yurii P, Divitini Giorgio, Infante Ivan, De Trizio Luca, Manna Liberato

机构信息

Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.

Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.

出版信息

Adv Mater. 2023 Sep;35(38):e2303621. doi: 10.1002/adma.202303621. Epub 2023 Jun 27.

Abstract

InAs-based nanocrystals can enable restriction of hazardous substances (RoHS) compliant optoelectronic devices, but their photoluminescence efficiency needs improvement. We report an optimized synthesis of InAs@ZnSe core@shell nanocrystals allowing to tune the ZnSe shell thickness up to seven mono-layers (ML) and to boost the emission, reaching a quantum yield of ≈70% at ≈900 nm. It is demonstrated that a high quantum yield can be attained when the shell thickness is at least ≈3ML. Notably, the photoluminescence lifetimeshows only a minor variation as a function of shell thickness, whereas the Auger recombination time (a limiting aspect in technological applications when fast) slows down from 11 to 38 ps when increasing the shell thickness from 1.5 to 7MLs. Chemical and structural analyses evidence that InAs@ZnSe nanocrystals do not exhibit any strain at the core-shell interface, likely due to the formation of an InZnSe interlayer. This is supported by atomistic modeling, which indicates the interlayer as being composed of In, Zn, Se and cation vacancies, alike to the In ZnSe crystal structure. The simulations reveal an electronic structure consistent with that of type-I heterostructures, in which localized trap states can be passivated by a thick shell (>3ML) and excitons are confined in the core.

摘要

基于砷化铟的纳米晶体能够实现符合有害物质限制(RoHS)标准的光电器件,但它们的光致发光效率有待提高。我们报道了一种优化合成的砷化铟@硒化锌核壳纳米晶体,其能够将硒化锌壳层厚度调节至多达七个单层(ML),并增强发射,在约900纳米处达到约70%的量子产率。结果表明,当壳层厚度至少约为3ML时,可以获得高量子产率。值得注意的是,光致发光寿命随壳层厚度的变化很小,而俄歇复合时间(在快速情况下是技术应用中的一个限制因素)在壳层厚度从1.5增加到7ML时从11皮秒减慢到38皮秒。化学和结构分析表明,砷化铟@硒化锌纳米晶体在核壳界面处没有表现出任何应变,这可能是由于形成了铟 - 锌 - 硒中间层。原子模型支持了这一点,该模型表明中间层由铟、锌、硒和阳离子空位组成,与铟锌硒晶体结构相似。模拟结果揭示了一种与I型异质结构一致的电子结构,其中局域陷阱态可以被厚壳层(>3ML)钝化,激子被限制在核内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验