College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
Int J Biol Macromol. 2023 Jul 1;242(Pt 3):125059. doi: 10.1016/j.ijbiomac.2023.125059. Epub 2023 May 25.
Luteolin has extensive biological effects, but its low water-solubility and oral bioavailability have restricted its application. In this study, we successfully prepared new zein-gum arabic (GA)-tea polyphenols (TP) ternary complex nanoparticles (ZGTL) as a delivery system to encapsulate luteolin using an anti-solvent precipitation method. Consequently, ZGTL nanoparticles showed negatively charged smooth spherical structures with smaller particle size and higher encapsulation ability. X-ray diffraction revealed the amorphous state of luteolin in the nanoparticles. Hydrophobic, electrostatic, and hydrogen bonding interactions contributed to the formation and stability of ZGTL nanoparticles, as indicated by fluorescence and Fourier transform infrared spectra analyses. The inclusion of TP improved the physicochemical stability and luteolin retention rate of ZGTL nanoparticles by forming more compact nanostructures under different environmental conditions, including pH, salt ion concentration, temperature, and storage. Additionally, ZGTL nanoparticles exhibited stronger antioxidant activity and better sustainable release capacity under simulated gastrointestinal conditions due to TP incorporation. These findings demonstrate that ZGT complex nanoparticles have potential applications as an effective delivery system for encapsulating bioactive substances in food and medicine fields.
木樨草素具有广泛的生物学效应,但由于其低水溶性和口服生物利用度,限制了其应用。本研究采用反溶剂沉淀法成功制备了新型玉米醇溶蛋白-阿拉伯胶-茶多酚三元复合纳米粒(ZGTL)作为递送系统来包裹木樨草素。结果表明,ZGTL 纳米粒呈带负电荷的光滑球形结构,具有更小的粒径和更高的包封能力。X 射线衍射表明木樨草素在纳米粒中呈无定形态。荧光和傅里叶变换红外光谱分析表明,疏水力、静电力和氢键相互作用有助于 ZGTL 纳米粒的形成和稳定。TP 的加入通过在不同环境条件下(包括 pH 值、盐离子浓度、温度和储存条件)形成更紧凑的纳米结构,提高了 ZGTL 纳米粒的物理化学稳定性和木樨草素保留率。此外,由于 TP 的加入,ZGTL 纳米粒在模拟胃肠道条件下表现出更强的抗氧化活性和更好的可持续释放能力。这些发现表明,ZGT 复合纳米粒有望作为一种有效的递送系统,用于在食品和医药领域中封装生物活性物质。