Department of Natural Resources, Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, The Netherlands.
Lancaster Environment Center, Lancaster University, Lancaster, UK.
Nat Commun. 2023 May 27;14(1):3072. doi: 10.1038/s41467-023-38901-y.
New satellite remote sensing and machine learning techniques offer untapped possibilities to monitor global biodiversity with unprecedented speed and precision. These efficiencies promise to reveal novel ecological insights at spatial scales which are germane to the management of populations and entire ecosystems. Here, we present a robust transferable deep learning pipeline to automatically locate and count large herds of migratory ungulates (wildebeest and zebra) in the Serengeti-Mara ecosystem using fine-resolution (38-50 cm) satellite imagery. The results achieve accurate detection of nearly 500,000 individuals across thousands of square kilometers and multiple habitat types, with an overall F1-score of 84.75% (Precision: 87.85%, Recall: 81.86%). This research demonstrates the capability of satellite remote sensing and machine learning techniques to automatically and accurately count very large populations of terrestrial mammals across a highly heterogeneous landscape. We also discuss the potential for satellite-derived species detections to advance basic understanding of animal behavior and ecology.
新的卫星遥感和机器学习技术提供了以前所未有的速度和精度监测全球生物多样性的潜力。这些效率有望在与种群和整个生态系统管理相关的空间尺度上揭示新的生态见解。在这里,我们提出了一个强大的可转移深度学习管道,使用高分辨率(38-50 厘米)卫星图像自动定位和计数塞伦盖蒂-马拉开波生态系统中的大型迁徙有蹄类动物(角马和斑马)。该结果在数千平方公里和多种生境类型中实现了对近 50 万个体的准确检测,整体 F1 得分为 84.75%(精确率:87.85%,召回率:81.86%)。这项研究展示了卫星遥感和机器学习技术自动、准确地计数高度异质景观中大量陆地哺乳动物的能力。我们还讨论了卫星物种检测在推进动物行为和生态学基本理解方面的潜力。