Gulshan Varun, Rajan Renu P, Widner Kasumi, Wu Derek, Wubbels Peter, Rhodes Tyler, Whitehouse Kira, Coram Marc, Corrado Greg, Ramasamy Kim, Raman Rajiv, Peng Lily, Webster Dale R
Google Research, Mountain View, California.
Aravind Eye Hospital, Madurai, India.
JAMA Ophthalmol. 2019 Sep 1;137(9):987-993. doi: 10.1001/jamaophthalmol.2019.2004.
More than 60 million people in India have diabetes and are at risk for diabetic retinopathy (DR), a vision-threatening disease. Automated interpretation of retinal fundus photographs can help support and scale a robust screening program to detect DR.
To prospectively validate the performance of an automated DR system across 2 sites in India.
DESIGN, SETTING, AND PARTICIPANTS: This prospective observational study was conducted at 2 eye care centers in India (Aravind Eye Hospital and Sankara Nethralaya) and included 3049 patients with diabetes. Data collection and patient enrollment took place between April 2016 and July 2016 at Aravind and May 2016 and April 2017 at Sankara Nethralaya. The model was trained and fixed in March 2016.
Automated DR grading system compared with manual grading by 1 trained grader and 1 retina specialist from each site. Adjudication by a panel of 3 retinal specialists served as the reference standard in the cases of disagreement.
Sensitivity and specificity for moderate or worse DR or referable diabetic macula edema.
Of 3049 patients, 1091 (35.8%) were women and the mean (SD) age for patients at Aravind and Sankara Nethralaya was 56.6 (9.0) years and 56.0 (10.0) years, respectively. For moderate or worse DR, the sensitivity and specificity for manual grading by individual nonadjudicator graders ranged from 73.4% to 89.8% and from 83.5% to 98.7%, respectively. The automated DR system's performance was equal to or exceeded manual grading, with an 88.9% sensitivity (95% CI, 85.8-91.5), 92.2% specificity (95% CI, 90.3-93.8), and an area under the curve of 0.963 on the data set from Aravind Eye Hospital and 92.1% sensitivity (95% CI, 90.1-93.8), 95.2% specificity (95% CI, 94.2-96.1), and an area under the curve of 0.980 on the data set from Sankara Nethralaya.
This study shows that the automated DR system generalizes to this population of Indian patients in a prospective setting and demonstrates the feasibility of using an automated DR grading system to expand screening programs.
印度有超过6000万人患有糖尿病,面临糖尿病视网膜病变(DR)风险,这是一种威胁视力的疾病。视网膜眼底照片的自动解读有助于支持并扩大强大的筛查项目以检测DR。
前瞻性验证自动DR系统在印度两个地点的性能。
设计、背景和参与者:这项前瞻性观察性研究在印度的两个眼科护理中心(阿拉文德眼科医院和桑卡拉奈特拉亚)进行,纳入3049例糖尿病患者。数据收集和患者招募于2016年4月至7月在阿拉文德进行,于2016年5月至2017年4月在桑卡拉奈特拉亚进行。该模型于2016年3月进行训练并固定。
将自动DR分级系统与来自每个地点的1名经过培训的分级人员和1名视网膜专家的人工分级进行比较。在出现分歧的情况下,由3名视网膜专家组成的小组进行裁决作为参考标准。
中度或更严重DR或可转诊的糖尿病黄斑水肿的敏感性和特异性。
3049例患者中,1091例(35.8%)为女性,阿拉文德和桑卡拉奈特拉亚患者的平均(标准差)年龄分别为56.6(9.0)岁和56.0(10.0)岁。对于中度或更严重DR,单个非裁决分级人员的人工分级的敏感性和特异性分别为73.4%至89.8%和83.5%至98.7%。自动DR系统的性能等于或超过人工分级,在阿拉文德眼科医院的数据集中,敏感性为88.9%(95%CI,85.8 - 91.5),特异性为92.2%(95%CI,90.3 - 93.8),曲线下面积为0.963;在桑卡拉奈特拉亚的数据集中,敏感性为92.1%(95%CI,90.1 - 93.8),特异性为95.2%(95%CI,94.2 - 96.1),曲线下面积为0.980。
本研究表明,自动DR系统在前瞻性环境中适用于印度患者群体,并证明了使用自动DR分级系统扩大筛查项目的可行性。