Department of Geography, Trinity College Dublin, The University of Dublin, Dublin, Ireland.
Botanical, Environmental & Conservation (BEC) Consultants Ltd, Dublin, Ireland.
Environ Monit Assess. 2024 Aug 31;196(9):869. doi: 10.1007/s10661-024-12998-0.
Upland habitats provide vital ecological services, yet they are highly threatened by natural and anthropogenic stressors. Monitoring these vulnerable habitats is fundamental for conservation and involves determining information about their spatial locations and conditions. Remote sensing has evolved as a promising tool to map the distribution of upland habitats in space and time. However, the resolutions of most freely available satellite images (e.g., 10-m resolution for Sentinel-2) may not be sufficient for mapping relatively small features, especially in the heterogeneous landscape-in terms of habitat composition-of uplands. Moreover, the use of traditional remote sensing methods, imposing discrete boundaries between habitats, may not accurately represent upland habitats as they often occur in mosaics and merge with each other. In this context, we used high-resolution (2 m) Pleiades satellite imagery and Random Forest (RF) machine learning to map habitats at two Irish upland sites. Specifically, we investigated the impact of varying spatial resolutions on classification accuracy and proposed a complementary approach to traditional methods for mapping complex upland habitats. Results showed that the accuracy generally improved with finer spatial resolution data, with the highest accuracy values (80.34% and 79.64%) achieved for both sites using the 2-m resolution datasets. The probability maps derived from the RF-based fuzzy classification technique can represent complex mosaics and gradual transitions occurring in upland habitats. The presented approach can potentially enhance our understanding of the spatiotemporal dynamics of habitats over large areas.
高地栖息地提供了重要的生态服务,但它们受到自然和人为压力源的高度威胁。监测这些脆弱的栖息地是保护的基础,需要确定其空间位置和条件的信息。遥感已经成为一种很有前途的工具,可以在空间和时间上绘制高地栖息地的分布情况。然而,大多数免费卫星图像的分辨率(例如 Sentinel-2 的 10 米分辨率)可能不足以绘制相对较小的特征,尤其是在高地的异质景观中(就栖息地组成而言)。此外,传统的遥感方法,即对栖息地施加离散边界的方法,可能无法准确表示高地栖息地,因为它们通常以镶嵌和相互融合的形式出现。在这种情况下,我们使用高分辨率(2 米)Pleiades 卫星图像和随机森林(RF)机器学习来绘制两个爱尔兰高地地点的栖息地。具体来说,我们研究了不同空间分辨率对分类精度的影响,并提出了一种与传统方法互补的方法来绘制复杂的高地栖息地。结果表明,随着空间分辨率数据的细化,分类精度通常会提高,两个地点使用 2 米分辨率数据集时,精度值最高(分别为 80.34%和 79.64%)。基于 RF 的模糊分类技术得出的概率图可以表示高地栖息地中发生的复杂镶嵌和渐变过渡。所提出的方法有可能增强我们对大面积栖息地时空动态的理解。