Dept. of Polymer Science and Rubber Technology, CUSAT, Kochi 22, India.
Dept. of Polymer Science and Rubber Technology, CUSAT, Kochi 22, India; Interuniversity Centre for Nanomaterials and Devices, CUSAT, Kochi 22, India.
Int J Biol Macromol. 2023 Jul 1;242(Pt 4):125038. doi: 10.1016/j.ijbiomac.2023.125038. Epub 2023 May 26.
Cross-linked chitin/deacetylated chitin nanocomposite films can be considered as a potential industrial adsorbent for the removal of organic pollutants for water purification. Chitin (C) and deacetylated chitin (dC) nanofibers were extracted from raw chitin and characterized using FTIR, XRD and TGA techniques. The TEM image confirmed the formation of chitin nanofibers with a diameter range of 10-45 nm. The deacetylated chitin nanofibers (DDA-46 %) having 30 nm diameter was evidenced using FESEM. Further, the C/dC nanofibers were prepared at different ratios (80/20, 70/30, 60/40 & 50/50 ratios) and cross-linked. The highest tensile strength of 40 MPa and Young's modulus of 3872 MPa was exhibited by 50/50C/dC. The DMA studies revealed that the storage modulus enhanced by 86 % for 50/50C/dC (9.06 GPa) in comparison to 80/20C/dC nanocomposite. Further, the 50/50C/dC exhibited a maximum adsorption capacity of 30.8 mg/g at pH = 4 in 30 mg/L of Methyl Orange (MO) dye within 120 min. The experimental data agreed with pseudo-second-order model indicating chemisorption process. The adsorption isotherm data was best described by Freundlich model. The nanocomposite film is an effective adsorbent that can be regenerated and recycled for five adsorption-desorption cycle.
交联壳聚糖/去乙酰化壳聚糖纳米复合材料膜可用作去除水中有机污染物的潜在工业吸附剂,以实现水净化。通过傅里叶变换红外光谱(FTIR)、X 射线衍射(XRD)和热重分析(TGA)技术对壳聚糖(C)和去乙酰化壳聚糖(dC)纳米纤维进行了提取和表征。TEM 图像证实了壳聚糖纳米纤维的形成,其直径范围为 10-45nm。FESEM 证实了直径为 30nm 的去乙酰化壳聚糖纳米纤维(DDA-46%)的存在。此外,还制备了不同比例(80/20、70/30、60/40 和 50/50)的 C/dC 纳米纤维并进行交联。50/50C/dC 表现出最高的拉伸强度 40MPa 和杨氏模量 3872MPa。DMA 研究表明,与 80/20C/dC 纳米复合材料相比,50/50C/dC 的储能模量提高了 86%(9.06GPa)。此外,在 pH=4 和 30mg/L 的甲基橙(MO)染料中,50/50C/dC 在 120min 内的最大吸附容量为 30.8mg/g。实验数据符合表明化学吸附过程的准二级动力学模型。吸附等温线数据最符合 Freundlich 模型。该纳米复合材料膜是一种有效的吸附剂,可在 5 次吸附-解吸循环中再生和回收。