Suppr超能文献

单个自旋交叉粒子中的激光驱动瞬态相位振荡

Laser-Driven Transient Phase Oscillations in Individual Spin Crossover Particles.

作者信息

Hu Yaowei, Picher Matthieu, Palluel Marlène, Daro Nathalie, Freysz Eric, Stoleriu Laurentiu, Enachescu Cristian, Chastanet Guillaume, Banhart Florian

机构信息

Institut de Physique et Chimie des Matériaux UMR 7504, Université de Strasbourg & CNRS, Strasbourg, 67034, France.

Université de Bordeaux, CNRS, Bordeaux INP (ICMCB-UMR 5026), Pessac, 33600, France.

出版信息

Small. 2023 Sep;19(39):e2303701. doi: 10.1002/smll.202303701. Epub 2023 May 28.

Abstract

An unusual expansion dynamics of individual spin crossover nanoparticles is studied by ultrafast transmission electron microscopy. After exposure to nanosecond laser pulses, the particles exhibit considerable length oscillations during and after their expansion. The vibration period of 50-100 ns is of the same order of magnitude as the time that the particles need for a transition from the low-spin to the high-spin state. The observations are explained in Monte Carlo calculations using a model where elastic and thermal coupling between the molecules within a crystalline spin crossover particle govern the phase transition between the two spin states. The experimentally observed length oscillations are in agreement with the calculations, and it is shown that the system undergoes repeated transitions between the two spin states until relaxation in the high-spin state occurs due to energy dissipation. Spin crossover particles are therefore a unique system where a resonant transition between two phases occurs in a phase transformation of first order.

摘要

通过超快透射电子显微镜研究了单个自旋交叉纳米粒子不同寻常的膨胀动力学。在受到纳秒激光脉冲照射后,粒子在膨胀过程中和膨胀后表现出显著的长度振荡。50 - 100纳秒的振动周期与粒子从低自旋态转变为高自旋态所需的时间处于同一数量级。在蒙特卡罗计算中,使用一个模型对这些观测结果进行了解释,该模型中晶体自旋交叉粒子内部分子间的弹性和热耦合控制着两种自旋态之间的相变。实验观察到的长度振荡与计算结果相符,并且表明该系统在两个自旋态之间反复转变,直到由于能量耗散而在高自旋态发生弛豫。因此,自旋交叉粒子是一个独特的系统,在一级相变中会发生两个相之间的共振转变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验