Hu Yaowei, Picher Matthieu, Tran Ngoc Minh, Palluel Marlène, Stoleriu Laurentiu, Daro Nathalie, Mornet Stephane, Enachescu Cristian, Freysz Eric, Banhart Florian, Chastanet Guillaume
Institut de Physique et Chimie des Matériaux, UMR 7504 CNRS, Université de Strasbourg, Strasbourg, F-67034, France.
Universite de Bordeaux, CNRS, UMR 5798, LOMA, 358 Cours de la libération, Talence cedex, F-33405, France.
Adv Mater. 2021 Dec;33(52):e2105586. doi: 10.1002/adma.202105586. Epub 2021 Oct 17.
Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light-induced mechanical switches or allow to investigate and control microstructural strains and fatigability. The development of characterization techniques probing nanoscopic behavior with high spatio-temporal resolution allows to trigger and visualize such mechanical changes of individual nanoscopic objects. Here, ultrafast transmission electron microscopy (UTEM) is used to precisely probe the length changes of individual switchable nanoparticles induced thermally by nanosecond laser pulses. This allows revealing of the mechanisms of spin switching, leading to the macroscopic expansion of SCO materials. This study is conducted on individual pure SCO nanoparticles and SCO nanoparticles encapsulating gold nanorods that serve for plasmonic heating under laser pulses. Length changes are compared with time-resolved optical measurements performed on an assembly of these particles.
自旋交叉(SCO)在作为分子、薄膜或纳米颗粒应用于电子器件时,是一种很有前景的开关现象。在沿此现象调制的特性中,光诱导机械变化极为重要,因为它们可作为快速光诱导机械开关,或用于研究和控制微观结构应变及疲劳性。具有高时空分辨率的探测纳米行为的表征技术的发展,使得触发和可视化单个纳米物体的这种机械变化成为可能。在此,超快透射电子显微镜(UTEM)被用于精确探测由纳秒激光脉冲热诱导的单个可切换纳米颗粒的长度变化。这有助于揭示自旋切换机制,从而导致SCO材料的宏观膨胀。本研究针对单个纯SCO纳米颗粒以及封装金纳米棒的SCO纳米颗粒展开,后者在激光脉冲下用于等离子体加热。将长度变化与对这些颗粒集合体进行的时间分辨光学测量结果进行比较。