Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK.
School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK.
Nucleic Acids Res. 2023 Jul 21;51(13):6609-6621. doi: 10.1093/nar/gkad433.
Gene expression stochasticity is inherent in the functional properties and evolution of biological systems, creating non-genetic cellular individuality and influencing multiple processes, including differentiation and stress responses. In a distinct form of non-transcriptional noise, we find that interactions of the yeast translation machinery with the GCN4 mRNA 5'UTR, which underpins starvation-induced regulation of this transcriptional activator gene, manifest stochastic variation across cellular populations. We use flow cytometry, fluorescence-activated cell sorting and microfluidics coupled to fluorescence microscopy to characterize the cell-to-cell heterogeneity of GCN4-5'UTR-mediated translation initiation. GCN4-5'UTR-mediated translation is generally not de-repressed under non-starvation conditions; however, a sub-population of cells consistently manifests a stochastically enhanced GCN4 translation (SETGCN4) state that depends on the integrity of the GCN4 uORFs. This sub-population is eliminated upon deletion of the Gcn2 kinase that phosphorylates eIF2α under nutrient-limitation conditions, or upon mutation to Ala of the Gcn2 kinase target site, eIF2α-Ser51. SETGCN4 cells isolated using cell sorting spontaneously regenerate the full bimodal population distribution upon further growth. Analysis of ADE8::ymRuby3/ GCN4::yEGFP cells reveals enhanced Gcn4-activated biosynthetic pathway activity in SETGCN4 cells under non-starvation conditions. Computational modeling interprets our experimental observations in terms of a novel translational noise mechanism underpinned by natural variations in Gcn2 kinase activity.
基因表达的随机性是生物系统功能特性和进化所固有的,它创造了非遗传的细胞个体性,并影响了包括分化和应激反应在内的多个过程。在一种明显的非转录噪声形式中,我们发现酵母翻译机制与 GCN4 mRNA 5'UTR 的相互作用,这为该转录激活基因的饥饿诱导调控提供了基础,在细胞群体中表现出随机变化。我们使用流式细胞术、荧光激活细胞分选和微流控技术与荧光显微镜相结合,来描述 GCN4-5'UTR 介导的翻译起始的细胞间异质性。在非饥饿条件下,GCN4-5'UTR 介导的翻译通常不会被解除抑制;然而,亚群细胞始终表现出随机增强的 GCN4 翻译(SETGCN4)状态,这依赖于 GCN4 uORFs 的完整性。在营养限制条件下,当删除磷酸化 eIF2α 的 Gcn2 激酶或突变 Gcn2 激酶靶位 eIF2α-Ser51 的 Ala 时,该亚群会被消除。使用细胞分选分离的 SETGCN4 细胞在进一步生长时会自发再生出完整的双峰群体分布。对 ADE8::ymRuby3/ GCN4::yEGFP 细胞的分析表明,在非饥饿条件下,SETGCN4 细胞中的 Gcn4 激活生物合成途径活性增强。计算模型根据 Gcn2 激酶活性的自然变化,解释了我们实验观察的新型翻译噪声机制。