Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
Facultad de Medicina, Instituto de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina.
Mol Biol Evol. 2023 Jul 5;40(7). doi: 10.1093/molbev/msad128.
The genetic bases underlying the evolution of morphological and functional innovations of the mammalian inner ear are poorly understood. Gene regulatory regions are thought to play an important role in the evolution of form and function. To uncover crucial hearing genes whose regulatory machinery evolved specifically in mammalian lineages, we mapped accelerated noncoding elements (ANCEs) in inner ear transcription factor (TF) genes and found that PKNOX2 harbors the largest number of ANCEs within its transcriptional unit. Using reporter gene expression assays in transgenic zebrafish, we determined that four PKNOX2-ANCEs drive differential expression patterns when compared with ortholog sequences from close outgroup species. Because the functional role of PKNOX2 in cochlear hair cells has not been previously investigated, we decided to study Pknox2 null mice generated by CRISPR/Cas9 technology. We found that Pknox2-/- mice exhibit reduced distortion product otoacoustic emissions (DPOAEs) and auditory brainstem response (ABR) thresholds at high frequencies together with an increase in peak 1 amplitude, consistent with a higher number of inner hair cells (IHCs)-auditory nerve synapsis observed at the cochlear basal region. A comparative cochlear transcriptomic analysis of Pknox2-/- and Pknox2+/+ mice revealed that key auditory genes are under Pknox2 control. Hence, we report that PKNOX2 plays a critical role in cochlear sensitivity at higher frequencies and that its transcriptional regulation underwent lineage-specific evolution in mammals. Our results provide novel insights about the contribution of PKNOX2 to normal auditory function and to the evolution of high-frequency hearing in mammals.
哺乳动物内耳形态和功能创新的进化背后的遗传基础知之甚少。基因调控区域被认为在形态和功能的进化中发挥着重要作用。为了揭示在哺乳动物谱系中专门进化的关键听力基因的调控机制,我们在内耳转录因子 (TF) 基因中绘制了加速的非编码元件 (ANCEs),并发现 PKNOX2 在其转录单元中拥有最多的 ANCEs。通过在转基因斑马鱼中的报告基因表达测定,我们确定与来自密切的外群物种的同源序列相比,PKNOX2 的四个 ANCE 驱动了不同的表达模式。由于 PKNOX2 在耳蜗毛细胞中的功能作用尚未被先前研究过,我们决定研究由 CRISPR/Cas9 技术产生的 Pknox2 缺失小鼠。我们发现 Pknox2-/- 小鼠在高频时表现出降低的畸变产物耳声发射 (DPOAE) 和听觉脑干反应 (ABR) 阈值,同时峰值 1 幅度增加,与耳蜗基底区域观察到的内毛细胞 (IHC)-听神经突触数量增加一致。对 Pknox2-/- 和 Pknox2+/+ 小鼠的比较耳蜗转录组分析表明,关键的听觉基因受 Pknox2 控制。因此,我们报告 PKNOX2 在高频耳蜗敏感性中发挥关键作用,其转录调控在哺乳动物中经历了谱系特异性进化。我们的结果提供了关于 PKNOX2 对正常听觉功能和哺乳动物高频听力进化的贡献的新见解。